BEYOND SPATIAL PYRAMIDS: RECEPTIVE FIELD LEARNING FOR POOLED IMAGE FEATURES

Yangqing Jia¹ Chang Huang² ¹UC Berkeley EECS & ICSI {jiayq,trevor}@berkeley.edu

1. CONTRIBUTIONS

The key contributions of our work are:

- Analysis of the spatial receptive field (RF) designs for pooled features.
- Evidence that spatial pyramids may be suboptimal in feature generation.
- An algorithm that jointly learns adaptive RF and the classifiers, with an efficient implementation using over-completeness and structured sparsity.

4. SPATIAL POOLING REVISITED

- Much work has been done on the coding part, while the spatial pooling methods are often hand-crafted.
- Sample performances on CIFAR-10 with different receptive field designs:

(with a dictionary of size 200)

Note the suboptimality of SPM - random selection from an overcomplete set of spatially pooled features consistently outperforms SPM.

• We propose to learn the spatial receptive fields as well as the codes and the classifier.

5. NOTATIONS

- I: image input.
- $\mathbf{A}^1, \cdots, \mathbf{A}^K$: code activation as matrices, with \mathbf{A}_{ij}^k : activation of code k at position (i, j).
- **R**_{*i*}: RF of the *i*-th pooled feature.
- $op(\cdot)$: pooling operator, such as $max(\cdot)$.
- $f(\mathbf{x}, \boldsymbol{\theta})$: the classifier based on pooled features \mathbf{x} .
- A pooled feature x_i is defined by choosing a code indexed by c_i and a spatial RF \mathbf{R}_i :

$$x_i = \operatorname{op}(\mathbf{A}_{\mathbf{R}_i}^{c_i})$$

The vector of pooled features x is then determined by the set of parameters $C = \{c_1, \dots, c_M\}$ and $\mathcal{R} =$ $\{\mathbf{R}_1,\cdots,\mathbf{R}_M\}.$

score
$$(x_i) = \left\| \frac{\partial \mathcal{L}(\mathbf{W}, \mathbf{b})}{\partial \mathbf{W}_{i, \cdot}} \right\|_{\text{Free}}^2$$

$$\mathbf{W}_{\mathcal{S}_{A},\cdot}^{(t+1)}, \mathbf{b} = \operatorname{arg\,min}_{\mathbf{W}_{\mathcal{S}_{A},\cdot},\mathbf{b}} \mathcal{L}(\mathbf{W},\mathbf{b})$$

9. RESULTS

• Performance comparison on CIFAR-10 with state-ofthe-art approaches:

> Method ours, d=1600 ours, d=4000 ours, d=6000 Coates 2010 d=1600 Coates 2010 d=4000 Coates 2011 d=6000 Krizhevsky TR'10 Yu ICML'10 Ciresan Arxiv'11 Coates NIPS'11

Pooled Dim	Accurac
6,400	80.17
16,000	82.04
24,000	83.11
6,400	77.9
16,000	79.6
48,000	81.5
N/A	78.9
N/A	74.5
N/A	80.49
N/A	82.0

• Result on MNIST and the 1-vs-1 saliency map obtained from our algorithm:

Method	err%
Coates ICML'11	1.02
Our Method	0.64
Lauer PR'07	0.83
Labusch TNN'08	0.59
Ranzato CVPR'07	0.62
Jarrett ICCV'09	0.53

10. REFERENCES

- A Coates and AY Ng. The importance of encoding versus training with sparse coding and vector quantization. ICML 2011.
- S Perkins, K Lacker, and J Theiler. Grafting: fast, incremental feature selection by gradient descent in function space. JMLR, 3:1333–1356, 2003.
- DH Hubel and TN Wiesel. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. of Physiology, 160(1):106–154, 1962.