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1. CONTRIBUTIONS 2. THE PIPELINE 3. NEUROSCIENCE INSPIRATION

The key contributions of our work are:

e Analysis of the spatial receptive field (RF) designs for
pooled features.
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Evidence that spatial pyramids may be suboptimal in
feature generation.
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An algorithm that jointly learns adaptive RF and State-of-the-art classification algorithms take a two-layer pipeline: the coding layer learns activations from local j"* 3 See lmilfli,le S

the classifiers, with an efficient implementation using image patches, and the pooling layer aggregates activations in multiple spatial regions. Linear classifiers are learned % I (sparse) coding
over-completeness and structured sparsity. from the pooled features.

4. SPATIAL POOLING REVISITED 6. THE LEARNING PROBLEM 8. GREEDY FEATURE SELECTION 9. RESULTS

¢ Much work has been done on the coding part, while Given a set of training data {(I,,,y) N we jointly e Directly perform optimization is still time and mem-
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e Performance comparison on CIFAR-10 with state-of-
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candidates + sparsity constraints to control the num-
ber of final features. oo _Performance vs. Number of Features

from an overcomplete set of spatially pooled features

consistently outperforms SPM e Result on MNIST and the 1-vs-1 saliency map ob-

tained from our algorithm:

e We propose to learn the spatial receptive fields as well

as the codes and the classifier. 7. OVERCOMPLETE RF

e We propose to use overcomplete receptive field can-
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5. NOTATIONS didates based on regular grids:

I: image input. 055 b —  Testin ,
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Al ... A¥:codeactivation as matrices, with Alfj: ac- .... =====
tivation of code £ at position (i, 7). ....

k| e e Benetit of overcompleteness in spatial pooling + fea-

R,;: RF of the i-th pooled feature. ture selection: higher performance with smaller code-
' .... _ SEENEENEEE books and lowergfeature dimensions.

op(-): pooling operator, such as max(-). (a) Base (b) SPM (c) Ours
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