
AUGMENTED TREE PARTITIONING FOR INTERACTIVE IMAGE SEGMENTATION

Yangqing Jia† Jingdong Wang‡ Changshui Zhang† Xian-Sheng Hua‡

†State Key Laboratory of Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology
Department of Automation, Tsinghua University, Beijing 100084, China
‡Internet Media Group, Microsoft Research Asia, Beijing 100080, China

ABSTRACT

In this paper, we propose a new fast semi-supervised image
segmentation method based on augmented tree partitioning.
Unlike many existing methods that use a graph structure to
model the image, we use a tree-based structure called the
augmented tree, which is built up by augmenting several ab-
stract label nodes to the minimum spanning tree of the orig-
inal graph. We then model image segmentation as the parti-
tioning problem on the augmented tree. Dynamic program-
ming is used to efficiently solve the optimization problem.
Experimental results show that our method gives competitive
segmentation results, and the speed is much faster than graph-
based methods.

Index Terms— Image segmentation, augmented tree, dy-
namic programming

1. INTRODUCTION

Image segmentation is one of the fundamental problems in
many image processing applications. One wants to to cut out
the area of interest, or decompose the image to several blobs
for further analysis. Recently, fully automated segmentation
techniques have seen a great development, but the results are
not as satisfactory as people desire. Thus, in practice, a more
popular way is to perform semi-supervised (also called inter-
active) image segmentation methods, which adopts human aid
to perform segmentation. For instance, the user labels parts of
the image by marking several pixels or strokes in the image,
and the algorithm then segments the image into two or more
parts.

One of the representative works on semi-supervised im-
age segmentation is the s/t graph cuts approach [1], which
uses a graph structure to model the image and performs seg-
mentation on the graph. There are also some later studies
such as [2, 3] that follows the graph cuts thought. The graph
cuts approach can get the global optimum for two-label seg-
mentation. But it can only be used to approximately solve
multi-label segmentation [1]. Some statistical inference ap-
proaches are alternatively used to solve multi-label problems,

such as generalized Swendsen-Wang cuts in [4] and gener-
alized belief propagation in [5]. Some other works mainly
focus on providing a convenient interactivity interface, such
as Lazy snapping [6] and grabcut [7].

However, the shortcoming of the graph-based algorithms
is that it involves a polynomial time complexity, often no less
than Θ(n2), where n is the number of pixels. Thus segmen-
tation of a large image is prohibitive, and even with the im-
plementation of superpixels such as the one in [8], it may still
require several seconds to produce the result. This prevents it
from giving instant feedback to the user in a interactive image
segmentation procedure.

In this paper, we focus on providing a new image seg-
mentation algorithm that has a fast computational speed for
real-time use as well as competitive performance against its
graph-based counterpart. We first use the minimum spanning
tree to approximate the graph structure of the image, then in-
troduce the notion of augmented tree to incorporate label in-
formation. An efficient dynamic programming approach is
used to find label for all the nodes of the tree. To demonstrate
the efficiency of our method, we evaluate our method based
on both visual performance and quantitative measures. The
results are very promising.

The remainder of this paper is organized as follows. Sec. 2
presents the proposed approach, augmented tree partitioning.
Sec. 3 gives the experiments on interactive image segmenta-
tion. Sec. 4 concludes this paper.

2. AUGMENTED TREE PARTITIONING

In this section, we first introduce the augmented tree structure
to model an image, then discuss the segmentation based on it
using dynamic programming.

2.1. Constructing Augmented Tree

A graph G = {V, E} defined on an image contains all the
pixels (or superpixels, as we will discuss later) as its vertices.
Each pair of pixels that are spatial neighbors has an edge con-
necting them. The length of the edge is computed as the dis-



u

v

r

(a) A tree

s1 s2

(b) An augmented tree

Fig. 1. The tree structure and the augmented tree structure.

tance between its corresponding two vertices u and v as:

g(u, v) = ‖fu − fv‖, (1)

where fu and fv are the RGB value of the pixels.
A general graph may be cyclic and methods based on it

often involve a high time complexity. Thus, we use a tree to
model the image. A tree structure T = (V, E) is an acyclic
and connected graph that has one root node, and each node
other than the root node has a unique parent node. An exam-
ple of the tree structure is shown in Fig. 1(a). We use the min-
imum spanning tree criterion to convert the graph to the tree.
The Prim’s algorithm or Kruskal’s algorithm can be imple-
mented to efficiently solve the problem. In a tree, we define
pa(v) as the parent node of v, and define Tv as the subtree
rooted from node v. For example, in Fig. 1(a), Tv is formed
of v and its two child nodes. Let r ∈ V be the root node,
the depth of all other v ∈ V , denoted as dv , is the number of
the edges on the shortest path from r to v. It is obvious that
dv = dpa(v) + 1, which can be easily verified in Fig. 1(a).
Also, we define the root node’s depth to be 0 by default.

For a k-way segmentation problem, we form an aug-
mented tree by adding several abstract nodes {si}ki=1 and
connecting them with all nodes V in the tree. Each abstract
node can be seen as indicating the kth possible labels. We
denote the augmented tree by T ′ = (V ∪ {si}ki=1, E ∪ Ea)
where (Ea = {(v, s)}), v ∈ V and s ∈ {si}ki=1. An example
of the augmented tree is shown in Fig. 1(b). For convenience,
we just draw a few augmented edges.

2.2. Augmented Tree Partitioning

A partitioning on an augmented tree is defined as separating
the nodes into k disjoint subsets, {Vi ∪ {si}}ki=1, such that
Vi ∩Vj = ∅, ∪k

i=1Vi = V , and there are no edges between Vi

and Vj . This is solved by simply removing some edges. To in-
corporate prior information given by the user, we introduce an
additional constraint that the augmented nodes {si}ki=1 must
lie in different subsets. Denote a possible labeling on V as
L = {lv} where lv is the subset that v belongs to, we aim to
find an optimum partition that maximizes the following prob-
ability measure:

P (L) =
∏

v
P (slv , lv)

∏
v
T (lv|lpa(v)), (2)

where P (slv , lv) encodes the likelihood that node v ∈ V is
connected to slv (note that every node is connected to one
and only one of the abstract nodes). In our experiment, this
likelihood is evaluated by learning a Gaussian mixture model
(GMM) in the RGB color space from the labeled pixels.
T (lv|lpa(v)) encodes the likelihood of lv given the label of
its parent node, which represents the tree structure. In our
method, it is modeled as a Potts model as follows:

T (lv|lpa(v))=
1
Z

{
1, lv = lpa(v)

1−exp(−λg(v, pa(v))), lv 6= lpa(v),
(3)

where g(v, pa(v)) is the distance measure of v and pa(v) as
we defined in the prior subsection. Z is the normalization pa-
rameter, and λ controls the steepness of the exponential func-
tion. In our experiments, λ is set to 1 by default.

An efficient dynamic programming procedure can be
adopted to maximize Eqn. (2), and we follow the way similar
with [9]. We describe the algorithm in detail.

Consider subtree Tv rooted from node v, we define a func-
tion qv(lv) with node v’s label lv as the argument:

qv(lv) = maxl∗ p(lv, l∗), (4)

where l∗ represents the possible labels of all the nodes in sub-
tree Tv except node v, and p(lv, l∗) = PTv

(LTv
) is the prob-

ability measure in subtree Tv . For the internal nodes of the
tree, from the Markov and acyclic properties, we obtain the
recursive calculation of the function value as:

qv(lv) = max
{lw,w∈Cw}

P (slv , lv)
∏

w∈Cv

T (lw|lv)qw(lw)

= P (slv , lv)
∏

w∈Cv

max
lw

T (lw|lv)qw(lw). (5)

It is easy to see that for a leaf v, qv(lv) can be evaluated di-
rectly as qv(lv) = p(lv) = P (slv , lv). Thus, qv(lv) for all
the internal nodes and the root node can be evaluated in a re-
cursive bottom-up way. Suppose the maximum depth of the
tree is D, the nodes with depth D are just leaves, and their
posterior probabilities qv(lv) can be directly evaluated as dis-
cussed above. Then, we can evaluate qv(lv) for all the nodes
with depth D − 1 using Eqn. (5). Similarly, the process is
repeated in a decreasing depth order until we reach the root
node.

The optimal labeling can be then found in a top-down way
from the root node to leaf nodes. The optimal label assign-
ment for root node r can be written as l∗r = arg maxlr qr(lr).
Then we use the optimal value at root r to find the labels of its
children w ∈ Cr by replacing max with arg max in Eqn. (5).
This arg max can be recorded in the process of bottom-up
posterior probability evaluation. Then we can go down the
tree in order of increasing depth to compute the optimal la-
bel assignment of each child node w, using the precomputed
arg maxlw .

In summary, our method includes two passes on the tree:
the Bottom-up pass evaluates the posterior probabilities in a



(a) Original Image (b) ATP (c) GC

Fig. 2. Interactive segmentation for figure-ground separation.

depth decreasing order starting from the leaf nodes, and the
Top-down pass assigns the optimal labels in a depth increas-
ing order starting from the root node. The dynamic program-
ming procedure to maximize Eqn. (2) takes only Θ(nk2) time
and consumes only Θ(nk) memories, which is superior over
graph-based methods.

Dynamic programming on a tree has been proved equiv-
alent to belief propagation on the same tree. Recently, sev-
eral inference methods such as loopy belief propagation and
tree reweighted belief propagation [10] generalized the belief
propagation for a loopy (cyclic) graph to obtain an approx-
imate local-optimum solution. In our method, the dynamic
programming procedure always reaches the global optimum
even in the multi-label cases, and the minimum tree fitting
step may introduce some approximation error on finding the
solution of the original loopy graph. However, although both
our method and prior methods do not guarantee global opti-
mality, our advantage is that we have circumvented the diffi-
cult and time-consuming graph-based problem by the simple
tree structure. This enables our method to bring immediate
feedbacks to the user and produce competitive performance in
practice, thus is quite suitable for interactive image segmen-
tation. This also indicates that a good solution of the loopy
graph model may not be completely equivalent to a good prac-
ticable segmentation algorithm.

(a) Original Image (b) ATP (c) α-GC

Fig. 3. Interactive segmentation for multiple object extrac-
tion.

2.3. Prior Model on Superpixels

To make tree partitioning more practical, a graph coarsening
step can be performed before tree fitting. Particularly, the
image graph can be coarsened by building the graph on the
superpixels of the image. This will bring at least two advan-
tages: 1) The memory complexity of the graph is reduced, and
2) The time complexities of tree construction and inference on
the tree are reduced. However, this poses a new problem of
defining the distance g between two superpixels.

We borrow the idea of pairwise predicate presented in [8],
and define the distance g between two superpixels C1 and C2

based on the external and internal differences as:

g(C1, C2) = max [d(C1, C2)/Int(C1), d(C1, C2)/Int(C2)] ,
(6)

where the external difference d is defined to be the minimum
distance among spatial neighboring pixels:

d(C1, C2) = minu∈C1,v∈C2,(u,v)∈E g(u, v), (7)

and the internal difference Int(C) is defined as:

Int(C) = max(u,v)∈MST(C) g(u, v), (8)



size 470 × 318 481 × 321 574 × 384
ATP 0.02 0.03 0.03 0.03 0.02
GC 0.24 0.32 0.37 0.45 0.46

size 425 × 521 600 × 603 535 × 513 800 × 533
ATP 0.04 0.07 0.04 0.05
α-GC 1.22 1.84 1.41 4.173

Table 1. A quantitative comparison of optimization times. The left table shows image sizes and optimization times (in seconds)
of ATP and GC for the images shown in Fig. 2 in the same order, and the right table corresponds to Fig. 3.

where the maximization is done over the edges in the mini-
mum spanning tree MST (C) of the superpixel C.

3. EXPERIMENTAL RESULTS

We demonstrate the proposed method on general-purpose im-
age segmentation. The results based on tree partitioning are
all obtained by segmenting the superpixels generated by the
watershed algorithm proposed in [11]. The graph structure is
constructed by setting the superpixels as the nodes and con-
necting two superpixels iff they are spatial neighbors. Then,
the minimum spanning tree is constructed to approximate the
graph. The ranges for RGB values are all normalized to [0,
1]. The running times are given based on an 1.9 GHz Pentium
4 desktop PC without special optimization.

For interactive image segmentation, we follow the user
interactivity similar in [1], and let users draw several scribbles
to mask the pixels as different objects. Similarly, we set the
masked pixels as hard constraints. To impose this, we set
P (iv|lv) = 0 if lv is not as the label indicated by the user, and
otherwise P (iv|lv) = 1. Figs. 2 and 3 show our results and
graph cut (GC) based results both with the same scribbles as
shown in (a). In multi-object cases, the iterative α-expansion
graph cuts (α-GC) algorithm is adopted for comparison. We
have also tested other algorithms such as random walk[12],
the results and computation time are similar with graph cut,
thus are omitted due to space constraints.

Segmentation results indicate that our approach can get
satisfactory performance, and the time consumed in the opti-
mization of ATP and graph cut (the image preprocessing time
is not included since it just needs to be performed once on
load) demonstrates that augmented tree partitioning is more
efficient. For all the images, ATP can return the result in
less than 0.1 seconds using dynamic programming and gives
almost instant feedback to the user, while graph cuts needs
much more time. For multi-object cases, the α-expansion
graph cuts algorithm usually takes more than 1 second to
compute (note that it still does not guarantee global optimal-
ity), which results in a noticeable lag. Thus, we believe that
our method can give a more smooth interaction in application.

4. CONCLUSION

In this paper, we presented a new semi-supervised image
segmentation algorithm based on augmented tree partition-
ing and dynamic programming. By using a tree structure to

model an image graph, the time complexity of our algorithm
is linear to the node numbers. Experimental results have
shown that our method produces competitive performance in
practice, requiring cheap computational cost.

5. ACKNOWLEDGEMENT

This work is supported by the National 863 Project (No.
2006AA10Z210) of China.

6. REFERENCES

[1] Yuri Boykov and Marie-Pierre Jolly, “Graph Cuts and Efficient
N-D Image Segmentation,” Int. J. Comput. Vision, vol. 70, no.
2, pp. 109–131, 2006. 1, 4

[2] Olivier Juan and Yuri Boykov, “Active Graph Cuts,” in CVPR,
2006, pp. 1023–1029. 1

[3] Pushmeet Kohli and Philip H. S. Torr, “Effciently Solving Dy-
namic Markov Random Fields Using Graph Cuts,” in ICCV,
2005, pp. 922–929. 1

[4] Adrian Barbu and Song-Chun Zhu, “Generalizing Swendsen-
Wang to Sampling Arbitrary Posterior Probabilities,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 27, no. 8, pp. 1239–
1253, 2005. 1

[5] Noam Shental, Assaf Zomet, Tomer Hertz, and Yair Weiss,
“Learning and Inferring Image Segmentations using the GBP
Typical Cut Algorithm,” in ICCV, 2003, pp. 1243–1250. 1

[6] Yin Li, Jian Sun, Chi-Keung Tang, and Heung-Yeung Shum,
“Lazy Snapping,” in ACM SIGGRAPH, 2004, pp. 303–308. 1

[7] C. Rother, V. Kolmogorov, and A. Blake, “”GrabCut”: Inter-
active Foreground Extraction Using Iterated Graph Cuts,” in
Proceedings of ACM SIGGRAPH., 2004, pp. 309–314. 1

[8] Pedro F. Felzenszwalb and Daniel P. Huttenlocher, “Efficient
Graph-Based Image Segmentation,” Int. J. Comput. Vision, vol.
59, no. 2, pp. 167–181, 2004. 1, 3

[9] Olga Veksler, “Stereo Correspondence by Dynamic Program-
ming on a Tree,” in CVPR, 2005, pp. 384–390. 2

[10] Vladimir Kolmogorov, “Convergent Tree-Reweighted Mes-
sage Passing for Energy Minimization,” in AISTATS, 2005.
3

[11] L. Vincent and P. Soille, “Watersheds in Digital Spaces: an
Efficient Algorithm Based on Immersion Simulations,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 13, no. 6, pp. 583–598,
June 1991. 4

[12] Leo Grady, “Random Walks for Image Segmentation,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 28, no. 11, pp. 1768–
1783, 2006. 4


