
Semi-supervised Classification on Evolutionary Data∗

Yangqing Jia1 Shuicheng Yan2 Changshui Zhang1

1 State Key Laboratory of Intelligent Technology and Systems
Tsinghua National Laboratory for Information Science and Technology (TNList)

Department of Automation, Tsinghua University, Beijing 100084, China
2 Department of Electrical and Computer Engineering, National University of Singapore, Singapore

Abstract
In this paper, we consider semi-supervised classi-
fication on evolutionary data, where the distribu-
tion of the data and the underlying concept that
we aim to learn change over time due to short-
term noises and long-term drifting, making a sin-
gle aggregated classifier inapplicable for long-term
classification. The drift is smooth if we take a lo-
calized view over the time dimension, which en-
ables us to impose temporal smoothness assump-
tion for the learning algorithm. We first discuss
how to carry out such assumption using temporal
regularizers defined in a structural way with respect
to the Hilbert space, and then derive the online al-
gorithm that efficiently finds the closed-form solu-
tion to the classification functions. Experimental
results on real-world evolutionary mailing list data
demonstrate that our algorithm outperforms classi-
cal semi-supervised learning algorithms in both al-
gorithmic stability and classification accuracy.

1 Introduction
Classification has been an important topic in the machine
learning area for decades. In most of the classical applica-
tions, the data to be analyzed are considered as a whole set
sampled from an unknown but fixed distribution. However, in
many applications the distribution of the data and the under-
lying concept we aim to learn may change over time. Such
changes often come from two factors: the short-term varia-
tion due to the noise, and the long-term drift of the underly-
ing concept. A working example of the concept drift is that
in online communities such as newsgroups, mailing lists and
web news sites, the distribution of the posts on a certain topic
may slowly change in the long term. For example, posts on
the topic “Hi-Tech” may slowly drift from the space project
in the 1960s to the emerging IT industry in the recent years
due to the evolution of the society and public interest. Mean-
while, for most real-world applications, the drifting of the

∗This work was supported in part by National Natural Science
Foundation of China (Grant No. 60835002), and in part by AcRF
Tier-1 Grant of R-263-000-464-112, Singapore. The work was per-
formed when Yangqing Jia was a Research Engineer at the National
University of Singapore.

−5 0 5
−5

0

5

(a)
−5 0 5

−5

0

5

(b)
−5 0 5

−5

0

5

(c)
Figure 1: a toy evolutionary scenario. (a) Classification at a
certain time; (b) classification in the short-term; (c) classifi-
cation in the long-term. See color pdf file for better viewing.

data distribution and the underlying concept is smooth over
time, and does not take place sharply: a newsgroup tracing
the development of AI may have been focusing on different
research areas in the last decades, but is not likely to suddenly
jump to focus on arts and literature. This creates what we call
the evolutionary data and raises new challenges to traditional
learning algorithms.

Similar to the nature of the evolutionary data, classification
on evolutionary data learns a chain of evolving classifiers for
different time periods. On the one hand, the classifiers are not
identical to each other, and using historical classifiers makes
little sense because the data distribution has changed during
the time. Training a single classifier using all historic data
also makes little sense, since the i.i.d. assumption of the clas-
sical classification algorithms does not hold in this case. On
the other hand, the classification on the data should be smooth
temporally, i.e., it should not deviate too much from the out-
put of the classifier for the recent history, because the drifting
of the data and the concept to learn does not change dramati-
cally in most real-world applications. This indicates that his-
torical classification information may help to determine the
current classifier.

Figure 1 shows a toy example of the short-term fluctuation
and long-term drifting. Assume that we are going to clas-
sify two Gaussians and know the classifier at a certain time
that separates the two classes well as in (a). In the short-term
scenario shown in (b), when there are only a few data with
comparatively large noise, we may believe that the classifi-
cation using the historical information (the dashed line) may
be more reliable than the classification using the current data
only (the dot dashed line), which reflects the idea of temporal
smoothness. Also, in the long-term, when the positions of the

two Gaussians evolve, the classification should also evolve to
predict the new data accurately as shown in (c). Thus, evolu-
tionary classification helps us both to suppress the short-term
noise and to adapt well to the long-term concept drift.

In the unsupervised case, [Chakrabarti et al., 2006] first
proposed evolutionary clustering to consider the evolving na-
ture of the data, which can be considered as an unsuper-
vised version of the problem we are considering. The ba-
sic thought is to minimizing the historical consistency along
the time as well as the clustering quality for a certain time
period. Based on such thought, [Chi et al., 2007] proposed
evolutionary spectral clustering for general-purpose cluster-
ing problems. For real-world applications, [Ning et al., 2007]
proposed to consider temporal evolving information for clus-
tering to discover blog communities. However, to the best
of our knowledge, there has been no prior work that consid-
ers semi-supervised classification for evolutionary data. In
this paper we mainly focus on semi-supervised classification
[Zhu et al., 2003], when only a small proportion of the data
are labeled and the remaining are unlabeled. Specifically,
we will first discuss how to utilize the temporal smoothness
thought similar to the unsupervised case, and then propose
a new semi-supervised learning algorithm for evolutionary
data, which carries out temporal regularization in a structural
way using the Hilbert space. Through real-world applications
we demonstrate that our method offers better classification re-
sults than classical semi-supervised learning algorithms.

2 A Brief Review of SSL
First we give a brief view on the classical semi-supervised
learning (SSL) problem. We will particularly focus on
the idea of manifold regularization framework proposed by
[Belkin et al., 2006] that is closely related to this paper.

In the semi-supervised learning problem, we are given a set
of data points X = {x1,x2, · · · ,xl,xl+1 · · · ,xn}, where
the first l data Xl = {xi}li=1 are labeled as Y = {yi}li=1
where yi represents the label of xi, and the remaining data
Xu = {xi}ni=l+1 are unlabeled. Each datum xi ∈ X is sam-
pled i.i.d. from a fixed but unknown distribution P(x) in the
feature space Rd. The task of SSL is to learn the labels of the
unknown data points (for transductive algorithms), or more
ideally, the closed-form representation of the classification
function f(x).

Belkin et al.proposed a general framework called manifold
regularization [Belkin et al., 2006], which seeks an optimal
classification function f by minimizing the following objec-
tive function:

J (f) =
l∑

i=1

L(yi,xi, f) + γA‖f‖2K + γI‖f‖2I , (1)

where the first term L is a loss function defined on the la-
beled data points, such as the squared loss (yi − f(xi))2 for
least-square problems, or the hinge loss function max[0, 1 −
yif(xi)] for SVM. Two regularizers are adopted in this
framework. The structural regularizer ‖f‖2K controls the
function’s complexity measure in an appropriately chosen
Reproducing Kernel Hilbert Space (RKHS) HK of functions

f : X → R, which is associated to a predefined Mercer ker-
nel K: X × X → R and has norm ‖ · ‖K . The spatial reg-
ularizer ‖f‖2I is a smoothness penalty term that reflects the
intrinsic structure of the data distribution P(x). When the
data lies on a low-dimensional manifoldM(which generally
holds if the dimensionality of the data is high), the term pe-
nalizes the function f along the manifold. γA and γI are two
weight parameters set prior.

In most cases, we do not know the exact distribution P(x).
[Belkin et al., 2006] showed that ‖f‖2I may be approximated
using the labeled and unlabeled data as

‖f‖2I =
1
n2

n∑
i,j=1

(f(xi)− f(xj))2Wij =
1
n2

f>Lf , (2)

where f = [f(x1), f(x2), · · · , f(xn)]>, and Wij is the edge
weight in the data adjacency graph. L = D −W is the
graph Laplacian matrix, where W is the weight matrix, and
D : D(i, i) =

∑n
j=1Wij is a diagonal degree matrix. It has

been proved in [Belkin and Niyogi, 2005] that by choosing
Gaussian weights to construct the data adjacency graph as

Wij = exp{−d(xi,xj)2/2σ2} , (3)
where d(xi,xj) is the distance between xi and xj , the graph
Laplacian converges to the Laplace-Beltrami operator ∇M
or its weighted version on the manifold, which serves as a
theoretically sound regularizer.

Several earlier semi-supervised learning algorithms, such
as the Gaussian random fields and harmonic function method
[Zhu et al., 2003] and the local and global consistency
method [Zhou et al., 2003] can all be considered special cases
under this general framework. We refer to [Zhu, 2007] for a
complete survey on the semi-supervised algorithms.

3 SSL for Evolutionary Data: SSL-E
In this section, we introduce the semi-supervised learning al-
gorithm for evolutionary data in detail. First, we discuss how
to incorporate the temporal regularizer, and then develop both
offline and online algorithms for this semi-supervised learn-
ing task.

3.1 Basic settings
When the classification task is carried out evolutionarily, we
aim to learn a function F(t) : R 7→ H, where H is a Hilbert
space of classification functions f : Rd 7→ R. Following the
idea of SVM, we use a Reproducing Kernel Hilbert Space
HK associated with a pre-defined kernel K. Specifically,
F(t) = ft gives the classification function for each time t,
and ft is then used to predict the label of the data generated
from time t. For simplicity and real-world applications, we
assume that the time t takes integer value from 1 to T . For
example, posts of a mailing list from each month can be con-
sidered as data from one time step. Thus we are given a set of
data setsX = {X1,X2, · · · ,XT } that are from T consecutive
time steps, which we call “frames”, borrowing the idea from
video processing. Each subset Xt = {x1,t,x2,t, · · · ,xnt,t}1

1For each data, the first subscript denotes the index in the dataset,
and the second subscript denotes the index of the frame that the data
belongs to.

contains nt data points that are generated from an unknown
data distribution P(x; t) in the feature space Rd. Similar to
the classical SSL problem, we assume that the first lt data
{x1,t, · · · ,xlt,t} are labeled as Yt = {yi}lti=1. In this way,
the goal is to find T classification functions {F(t)}Tt=1 =
{ft(x)}Tt=1 for all the frames that classifies the unlabeled data
points and possible out-of-sample data. Similar to classical
SSL algorithms, for the dataset Xt from each frame, a data
adjacency graph can be constructed. We denote the weight
matrix, the degree matrix and the graph Laplacian by Wt,
Dt, and Lt respectively.

3.2 Evolutionary Smoothness Assumption
Recall the smoothness assumption in the general learning
problems, which argues that two data points are likely to have
similar labels if they are close to each other. We may extend
it to the evolutionary data and make the following assumption
when the label changes over time:

Evolutionary Smoothness Assumption: classification func-
tions ft1 and ft2 are likely to be similar if the times t1 and t2
are close.

A direct approach to calculate the similarity is to use the
integral of ‖∂F/∂t‖2 over time t. For a give time interval
from 1 to ≤ T , the integral can be calculated as:∫ T

1

∥∥∥∥∂F∂t
∥∥∥∥2

dt . (4)

The smaller the integral is, the smoother the function is over
the time. Consider the extreme case, when we force the in-
tegral to be zero, the classification functions will be identical
with respect to the time t.

In the problem proposed in Section 3.1, we assume that the
time takes discrete value from 1 to T . Thus, inspired by the
work of [Evgeniou et al., 2006], we may use the backward
difference to approximate the above integral as∫ T

1

∥∥∥∥∂F∂t
∥∥∥∥2

dt ≈ 1
T − 1

T∑
t=2

‖ft(·)− ft−1(·)‖2K , (5)

where the norm ‖ · ‖K is carried out in the RKHS HK and
compares the distance between the two classification func-
tions ft and ft−1 in the RKHS.

3.3 Offline Learning Algorithms
Equation (5) serves as a temporal regularizer for the learn-
ing algorithm. We first propose an offline learning algorithm
to show how to use the temporal regularization term. Tak-
ing into consideration the evolutionary smoothness assump-
tion, an offline learning algorithm simultaneously learns the
T classification functions by minimizing the following objec-
tive function:

Joff =
T∑

t=1

[nt∑
i=1

L(yi,t,xi,t, ft(·)) + γI‖ft(·)‖2I
]

+ γA‖f1‖2K + γA

T∑
t=2

‖ft(·)− ft−1(·)‖2K , (6)

where γA and γI are pre-defined weight parameters. Note
that for t = 1, as there are no preceding frames, we carry
out the temporal regularizer as ‖f1‖2K similar to the idea of
support vector machines. It is not difficult to observe that the
problem is convex if the loss function L is convex, thus the
global optimal solution can be found.

3.4 The Representer Theorem
Although the convexity is guaranteed, it is still difficult to
find the analytical form of {ft(·)}Tt=1 in the Hilbert Space. In
the support vector machine and manifold regularization algo-
rithms, the representer theorem [Schölkopf and Smola, 2002;
Belkin et al., 2006] enables us to convert the problem into
finding a set of expansion coefficients. Actually, we can ex-
tend the representer theorem to the evolutionary case:
Theorem 3.1. (Representer Theorem) Assume that the reg-
ularizers ‖ft(·)‖2I (1 ≤ t ≤ T) are carried out empirically
using the graph Laplacian as f>t Ltft where ft is the vector of
function values {ft(xi,t)}, then the minimizer of (6) admits
an expansion

f∗t (x) =
T∑

k=1

nt∑
i=1

αi,kK(x,xi,k), ∀1 ≤ t ≤ T , (7)

given a predefined Mercer kernel K(·, ·).
In another word, each classification function can

be expanded by the (
∑T

t=1 nt) kernel functions
{K(x,xi,k)}nt

i=1
T
t=1. The proof to the theorem is simi-

lar to the one in [Belkin et al., 2006] and is based on the
orthogonality argument [Schölkopf and Smola, 2002]. We
provide the proof as follows:

Proof. (Theorem 3.1) In the RKHSHK , denote the subspace
spanned by the kernel functions {K(·,xi,t)}nt

i=1
T
t=1 by S.

Thus, any function f ∈ HK can be decomposed as the sum
of two orthogonal terms as f = f‖ + f⊥, where f‖ is the
projection of f to the subspace S and f⊥ is the orthogonal
complement. By definition, f‖ admits the expansion

f‖(·) =
T∑

k=1

nt∑
i=1

αi,kK(·,xi,k) . (8)

According to the reproducing property of RKHS, for any data
point xi,t (1 ≤ t ≤ T, 1 ≤ i ≤ nt), the function value is:

f(xi,t) = 〈K(·,xi,t), f〉 (9)

= 〈K(·,xi,t),
T∑

k=1

nt∑
j=1

αj,kK(·,xj,k)〉+ 〈K(·,xi,t), f⊥〉

= f‖(xi,t) ,

which turns out to be independent from the orthogonal
part f⊥. Note that the second equal sign of the equation
holds because 〈K(·,xi,t), f⊥〉 = 0 and the property of
〈K(·,x1),K(·,x2)〉 = K(x1,x2). Thus, the loss function
and the empirical regularizers ‖ft(·)‖2I in (6) depend only on
the value of the expansion coefficients {αi}nt

i=1
T
t=1 and the

predefined kernel K(·, ·).

For any two functions f and g in HK , they can be decom-
posed as the sum of the projection onto subspace S and the
orthogonal complement as f = f‖ + f⊥ and g = g‖ + g⊥.
Thus, we have

‖f − g‖2K = ‖f‖ − g‖ + f⊥− g⊥‖2k
= ‖f‖ − g‖‖2K + ‖f⊥ − g⊥‖2K . (10)

The second equal sign is because f‖−g‖ and f⊥−g⊥ are also
orthogonal to each other. Consider the initial situation t = 1,
the norm of function f1 inHK can naturally be written as

‖f1‖2K = ‖f1,‖‖2K + ‖f1,⊥‖2K , (11)

and non-zero orthogonal complement terms for any ft will
increase the value of the loss function. Thus, the minimizer
of (6) always admits the expansion as (7).

3.5 The Online Algorithm
In practice, especially for large-scale problems such as text
mining, the offline learning algorithm may not work success-
fully as it requires to simultaneously learning the classifica-
tion functions for all the frames. As the data accumulates,
the learning problem scales up fast and renders the offline al-
gorithm impractical. However, the offline algorithm and the
representer theorem gives us a theoretical view of the prob-
lem and enables us to further consider more efficient online
algorithms, which learn one classifier for the current frame
with the historic information fixed.

Specifically, for each frame t (2 ≤ t ≤ T), the online
learning algorithm finds the classification function ft(·) by
minimizing the following objective function2:

J (t)
on =

nt∑
i=1

L(yi,t,xi,t, ft(·)) + γI‖ft(·)‖2I

+ γA‖ft(·)− ft−1(·)‖2K , (12)

where the classification function ft−1(·) is known.
It is not difficult to have the following corollary, which is

the direct result of Theorem 3.1:
Corollary 3.1. Assume that the regularizers ‖ft(·)‖2I (1 ≤
t ≤ T) are carried out empirically using the graph Laplacian
as f>t Ltft, then for each frame t, the minimizer of (12) admits
an expansion

f∗t (x) =
t∑

k=1

nt∑
i=1

αi,kK(x,xi,k), ∀1 ≤ t ≤ T , (13)

given a predefined Mercer kernel K(·, ·).
The corollary represents the characteristics of a typical

causal system: at time t, the classification function ft(·) is
completely determined by the observations at and before t.
However, notice that the problem of the offline algorithm
still exists: as the data accumulates, the scale of the expan-
sion subspace S that is constructed by the kernel functions
{K(·,xi,k)}nk

i=1
t
k=1 may grow too large for learning. Thus,

2Note that for t = 1, no historical information can be considered,
so the algorithm deteriorates to the classical manifold regularization
algorithm by replacing ‖ft(·)− ft−1(·)‖2K with ‖f1(·)‖2K .

we manually impose a representer constraint to the optimiza-
tion problem: for each frame f , we find the minimizer of (12)
only in the subspace St = span{K(·, xi,t)|xi,t ∈ Xt} that is
spanned by the kernel functions corresponding to the dataset
Xt, i.e.,

f∗(·; t) = arg min
ft(·)∈St

J (t)
on . (14)

Each subspace St is also a subspace of S . Note that the rep-
resenter constraint actually narrows the solution space. If we
assume that there are enough data in Xt, which is generally
assumed in semi-supervised learning and satisfied in many
real-world applications, empirically the subspace St is of-
ten enough to learn a good classification function. Thus, by
adding the representer constraint we may find a good balance
between computational speed and prediction accuracy.

3.6 Kernel Based Representation
In this subsection we give a kernel based representation for
the online algorithm, and derive its closed-form solution. For
each frame t, the solution to the online algorithm admits the
expansion

ft(·) =
nt∑

i=1

αi,tK(·,xi,t) . (15)

Thus, denote by ft the nt × 1 column vector [ft(xi,t)], and
denote by αt the nt× 1 column vector [αi,t], ft can be calcu-
lated by

ft = Ktαt , (16)
where Kt is an nt × nt kernel matrix with its ij-th element
be K(xi,t,xj,t). The regularizers in (12) can be respectively
calculated by:

‖ft(·)‖2I =
1
n2

t

f>t Ltft =
1
n2

t

α>t K>t LtKtαt ,

and
‖ft(·)− ft−1(·)‖2K (17)

= ‖ft(·)‖2K + ‖ft−1(·)‖2K − 2〈ft(·), ft−1(·)〉
= α>t Ktαt + α>t−1Kt−1αt−1 − 2α>t Kt,t−1αt−1

=
[

αt

αt−1

]> [Kt −Kt,t−1

−K>t,t−1 Kt−1

] [
α>t ,α

>
t−1

]
,

where Kt,t−1 is an nt × nt−1 kernel matrix with its ij-th el-
ement be K(xi,t,xj,t−1). Further, if we use the squared loss
L(yi,t,xi,t, ft(·)) = (yi,t− ft(xi,t))2, the objective function
(12) can be written as (eliminating the constant terms)

J (t)
on = (Ktαt − yt)>Ct(Ktαt − yt) + γAα>t Ktαt

− 2γAα>t Kt,t−1αt−1 +
γI

n2
t

α>t K>t LtKtαt ,

where yt is the label vector [yi,t] (If the data point xi,t is
unlabeled, yi,t may be set to any value, usually zero) and Ct

is an nt×nt diagonal matrix with its ii-th element be 1 if xi,t

is labeled, and 0 otherwise. By setting ∂J (t)
on /∂αt = 0, we

have the optimum solution in the closed-form as

α∗t = (K>t (Ct +
γI

n2
t

Lt)Kt + γAKt)−1

(KtCtyt + γAKt,t−1αt−1) . (18)

Table 1: General statistics of the dataset.

Label Date Total Posts Posts/Month
audiophiles 2005.6 - 2008.9 35,666 892
listening-l 2003.7 - 2008.9 25,738 422
sqlite-users 2003.10 - 2008.9 32,655 544
tutor-python 2004.12 - 2008.9 26,314 572
wine-devel 2003.9 - 2008.9 41,302 677

3.7 The Influence of the Historic Data
In the online algorithm, the classification function at the cur-
rent frame is only compared with the function in the previ-
ous frame. However, it is important to note that all the his-
toric data actually influence the decision at the current frame.
To see this, notice that the function ft(·) is determined by
three terms: the supervised information, the data distribution
at time t, and the function ft−1(·). In turn, ft−1(·) is deter-
mined by the data (including the supervised labels) at time t
and the function ft−2(·). In this way all the historical infor-
mation accumulates to determine the current prediction. We
will provide an empirical example showing the accumulation
of the historical information in Section 4.

4 Experiments
We test the effectiveness of our method on real-world evo-
lutionary mailing list data, which reveals the evolutionary
nature of data over a long time period in the text classifica-
tion application. First we give a brief description about the
data preprocessing. A web crawler was used to automati-
cally retrieve posts of five online mailing lists from their mail
archives, dated from September 2003 to September 2008. A
total of 182,343 raw posts were collected. Mailing list iden-
tifying information such as the header of the posts and the
signature lines of the corresponding list were removed before
processing the text. Then, we applied rainbow [McCallum,
1996] to lex the data files, who removed 20,668 posts that are
either non-text or contain too few words, and obtained a set
of 161,675 posts for the learning task. Table 1 provides the
general statistics of the datasets. Using the vocabulary pro-
duced by rainbow, we counted the number of occurrences of
each word in each document and calculated the tf-idf value to
form the feature vector for each document, which is further
normalized to unit length. We refer to [Salton and McGill,
1986] for a detailed introduction about the tf-idf value and
its physical interpretation. The corresponding mailing list of
each post is used to label the post as the ground truth. Thus
we have five classes of evolutionary data.

For the real-world dataset, classical semi-supervised learn-
ing incorporating all the current and historic data is not ap-
plicable, since the computation speed and required memory
space both suffer from the large scale of the dataset. Thus,
we applied three methods to analyze the data: the classical
SSL algorithm that is performed separately on each frame,
a naive evolutionary SSL that simply uses the data from the
current frame and its preceding frame to learn the classifier,
and online version of the algorithm SSL-E proposed in our

0 10 20 30 40 50 60
0

0.2

0.4

S
na

ps
ho

t C
os

t

0 10 20 30 40 50 60
0

1

2

Te
m

po
ra

l C
os

t

0 10 20 30 40 50 60
0.4

0.6

0.8

1

A
U

C

SSL
SSL−E

Figure 2: The spatial cost
∑

t ‖ft(·)‖2I , temporal cost (5) and
AUC value vs. time on the sql/win data.

paper. For all the methods, we used the linear kernel to de-
fine the RKHS, and used grid-search to find the optimal γI

and γA for the best average performance over the frames on
the experimental pair sql vs. win, which is then applied uni-
versally to other experimental pairs. The graph is constructed
in a 10-nearest neighbor way, and the distance is calculated
using the cosine similarity:

d(xi,xj) = arccos(
xi · xj

‖xi‖‖xj‖
) , (19)

A smaller d(xi,xj) indicates that xi and xj are more similar
to each other. Note that the linear kernel and cosine distance
have been widely applied to applications in text classification
such as [Dumais et al., 1998], and these settings are similar
to the experimental settings that are used in [Belkin et al.,
2006].

First we performed one-vs-one classification on the text
data. For each experimental pair, we used the time period
when both of them have posts and considered each month as
a frame. 10 data points are randomly labeled for each frame
(however, we ensure that there is at least one labeled post for
each class) and the rest of them are unlabeled. The average
value of the area under the ROC curve and the standard de-
viation over time are reported in Table 2. It is observed that
the evolutionary algorithm clearly outperforms the standard
semi-supervised learning algorithm that does not use tempo-
ral information, which justifies the effectiveness of the tem-
poral regularizer. We further tested the performance of multi-
class classification using data from all classes in the years
from 2005 to 2008. For each frame, 10% of the posts are la-
beled, a little more than the one-vs-one case because consid-
ering multiple classes simultaneously adds to the difficulty of
classification. The accuracy is reported in the last column of
Table 2. Again, the evolutionary algorithm SSL-E performs
much better than the classical SSL algorithm and naive evolu-
tionary learning algorithm. To better show the inherent nature
of the evolutionary algorithm, a comparison between SSL and
SSL-E on the spatial cost and the temporal cost, which are the
value of spatial regularizer (17) and temporal regularizer (5)
respectively, are presented in Figure 2.

From the experimental results we may find the advantage
of the evolutionary algorithm in two aspects. First, it helps
to increase the classification accuracy in most cases. Second,

Table 2: Experimental results on the evolutionary mailing list data using SSL, SSL-naive, and SSL-E. The reported values
for two-class classification are the area under the ROC curve, and classification accuracy for multi-class classification. All
the values are in percentage with the standard deviations shown in parentheses. The best performance is shown in bold (the
significance is checked with a standard t-test with 5% confidence).

class aud/lis aud/sql aud/tut aud/win lis/sql lis/tut
SSL 97.03 (4.42) 96.12 (5.19) 94.04 (7.05) 93.14 (8.20) 84.40 (9.02) 81.50 (9.89)
SSL-naive 97.77 (2.98) 95.99 (6.39) 95.47 (6.33) 93.18 (10.28) 86.30 (7.39) 85.77 (8.38)
SSL-E 98.98 (2.03) 98.80 (2.97) 97.95 (4.87) 97.11 (6.89) 92.74 (6.41) 91.30 (6.65)
class lis/win sql/tut sql/win tut/win Multi-class
SSL 78.41 (10.52) 63.00 (5.26) 64.42 (4.97) 63.33 (4.40) 77.49 (5.02)
SSL-naive 81.19 (9.86) 64.52 (3.41) 68.45 (4.16) 65.57 (3.51) 78.13 (4.89)
SSL-E 91.41 (6.89) 76.87 (4.10) 80.87 (8.16) 78.56 (7.13) 86.10 (3.21)

from Figure 2 we can observe that the evolutionary algorithm
can maintain a more stable performance than the classical
SSL algorithm, which suggests that it is more robust against
the noise in the data distribution and weak labeled informa-
tion. Also, notice that the naive extension (SSL-naive) of the
classical SSL using the current and precedent frames only
achieves a limited increase in the performance. The reason
is that for SSL-naive, the historical information only propa-
gates from one frame to its direct follower but not any further.
SSL-naive can of course use more frames to train the classi-
fier, but again the large scale of the number of data points
will render the solution impractical. Instead, SSL-E is able
to accumulate all the historical information to assist the cur-
rent frame, with only a minimal increase in the computation
complexity.

There are two interesting points that are worth mentioning.
First, the first diagram in Figure 2 shows that SSL-E actually
has larger spatial costs than SSL, but still has higher AUC
values. This indicates that simply minimizing the spatial cost
calculated empirically via graph Laplacian may not be opti-
mal for classification, since the number of data points nt is
limited and may be affected by the noise of the data. Second,
from the third diagram we can observe that the accuracy of
SSL-E increases from t = 1 to about 12 and becomes stable.
This demonstrates the argument in Section 3.7: all the his-
torical information (not only t− 1) accumulates and helps to
determine the classification at time t. For our experiment, the
performance stabilizes in about ten frames.

5 Conclusion
Learning the natural evolutionary information of the data is
a new challenge in the machine learning research. On the
one hand, the concept drifts during the time and makes a
single aggregated classifier inaccurate for long-term predic-
tion. On the other hand, the drifting is smooth if we take
a localized view over the time dimension, which enables us
to impose smoothness assumption for the learning task. In
this paper, we mainly focus on the semi-supervised learning
problem, and proposed a new algorithm for learning a series
of evolving classification functions. The temporal regularizer
is defined in a structural way using the difference between
two classification functions in a given Reproducing Kernel
Hilbert Space. We then derived the online algorithm that

can efficiently find the closed-form solutions to the classifica-
tion functions. Experimental results demonstrate that the pro-
posed algorithm provides much better performances on real-
world application in both stability and accuracy than classical
semi-supervised learning algorithms.

References
[Belkin and Niyogi, 2005] Mikhail Belkin and Partha Niyogi. To-

wards a theoretical foundation for laplacian-based manifold
methods. In COLT, pages 486–500, 2005.

[Belkin et al., 2006] M. Belkin, P. Niyogi, and V. Sindhwani. Man-
ifold Regularization: A Geometric Framework for Learning from
Labeled and Unlabeled Examples. JMLR, 7:2399–2434, 2006.

[Chakrabarti et al., 2006] D. Chakrabarti, R. Kumar, and
A. Tomkins. Evolutionary clustering. In KDD, pages 554–560,
2006.

[Chi et al., 2007] Y. Chi, X. Song, D. Zhou, K. Hino, and B.L.
Tseng. Evolutionary spectral clustering by incorporating tem-
poral smoothness. In KDD, pages 153–162, 2007.

[Dumais et al., 1998] S. Dumais, J. Platt, D. Heckerman, and
M. Sahami. Inductive learning algorithms and representations
for text categorization. In CIKM, pages 148–155, 1998.

[Evgeniou et al., 2006] T. Evgeniou, C.A. Micchelli, and M. Pontil.
Learning multiple tasks with kernel methods. JMLR, 6(1):615,
2006.

[McCallum, 1996] A.K. McCallum. Bow: A toolkit for statistical
language modeling, text retrieval, classification and clustering.
http://www.cs.cmu.edu/̃ mccallum/bow, 1996.

[Ning et al., 2007] H. Ning, W. Xu, Y. Chi, Y. Gong, and T. Huang.
Incremental spectral clustering with application to monitoring of
evolving blog communities. In SDM, 2007.

[Salton and McGill, 1986] G. Salton and M.J. McGill. Introduction
to Modern Information Retrieval. McGraw-Hill, Inc., 1986.

[Schölkopf and Smola, 2002] B. Schölkopf and A.J. Smola. Learn-
ing with kernels. The MIT Press, 2002.

[Zhou et al., 2003] D. Zhou, O. Bousquet, T.N. Lal, J. Weston, and
B. Scholkopf. Learning with Local and Global Consistency. In
NIPS, 2003.

[Zhu et al., 2003] X. Zhu, Z. Ghahramani, and J. Lafferty. Semi-
Supervised Learning Using Gaussian Fields and Harmonic Func-
tions. In ICML, 2003.

[Zhu, 2007] X. Zhu. Semi-Supervised Learning Literature Survey.
Computer Science, University of Wisconsin-Madison, 2007.

