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Abstract— Effective robotic interaction with household ob-
jects requires the ability to recognize both object instances and
object categories. The former are often characterized by locally
discriminative texture cues (e.g., instances with prominent
brand names and logos), and the latter by salient global
shape properties (plates, bowls, pots). We describe experiments
with both types of cues, combining a template-and-deformable-
parts detector to capture overall shape properties with a
local feature Naive-Bayes nearest neighbor model to capture
local texture properties. We base our implementation on the
recently introduced Kinect sensor, which provides reliable depth
estimates of indoor scenes. Depth cues provide segmentation
and size constraints to our method. Depth affinity is used to
modify the appearance term in a segmentation-based proposal
step, and size priors are imposed on object classes to prune
false positives. We address the complexity of scanning window
HOG search using multi-class pruning schemes, first applying
a generic object detection scheme to prune unlikely windows,
and then focusing only on the most likely class per remaining
window. Our method is able to handle relatively cluttered scenes
involving multiple objects with varying levels of surface texture,
and can efficiently employ multi-class scanning window search.

I. INTRODUCTION

The success of mobile robotics platforms hinges on their

ability to perform effective and efficient autonomous per-

ception and interaction with objects in unstructured environ-

ments. The availability of low cost, high quality sensors and

computing systems has equipped us with the necessary data

and computational resources for multi-category recognition

tasks. Yet few existing systems perform recognition of both

highly-textured specific instances and textureless generic

objects in cluttered scenes. Such a capability would lay the

foundations for robust and reliable mobile manipulation and

interaction in domestic settings, where human users often

require robotic agents to retrieve and manipulate specific

instances or generic categories.

In this paper we explore integrated global template and

local feature based recognition, employing efficient multi-

class search. Our method (see Figure 1) is effective both

on the textured objects for which local feature models have

traditionally succeeded, and on objects with little texture for

which object-level templates have proven successful. We use

the recently introduced Kinect sensor as the basis for our

method: its depth estimates provide segmentation cues for a

region proposal process and 3-D size constraints for object

instance models [1].
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Sunday, March 27, 2011Fig. 1: We propose a practical object detection method,

which uses the Kinect sensor for segmentation and size pri-

ors, and recognizes both specific object instances defined by

distinct local features (coke) and generic categories defined

by overall object shape (bottle).

We employ a local feature path following the approach that

is commonly used in instance detection schemes, leveraging

contemporary local feature models (SIFT, SURF, etc.) and

voting or “bag-of-word” matching schemes. We base our

approach on the NBNN method, which approximates the

likelihood of a new image using the product of individual

distance-to-class measures for each local feature in the test

image [2]. For the global path, we rely on a contempo-

rary histogram of gradients descriptor that includes latent

part components [3]; this method extends the histogram-of-

gradients (HOG) object template model with a deformable

high-resolution part structure.

Brute force search of local and global models across all

possible image windows, part configurations, and all possible

category labels is very computationally expensive, and pos-

sibly infeasible for practical robotics applications. A single-

class speedup incorporated in [4] prunes computation via

a cascade of sequential tests. Even with such optimization,

existing scanning-window deformable part models are very

computationally expensive in a multi-label setting, on the

order of one to two seconds per label for complex scenes.

In this paper we propose to control search complexity in

the multi-class setting using depth-enabled region proposal

schemes based on segmentation and generic object detection



processes. Our segmentation method exploits both depth

and RGB cues, and detects and removes support surfaces

from input scenes. Coherent regions from the segmenta-

tion process are used to define regions for local feature

computation. Generic object detection is performed using a

domain-adapted variant of a recent method based on 2-D

visual attention primitives [5]. This method removes regions

unlikely to have any detection. We further propose a novel

multi-class extension to the cascade pruning scheme which

interleaves search over classes with the standard single-class

cascade computation: we add the constraint that only the

most likely classes are considered per location.

We experimented with our method on a set of home and

office object categories captured using the Kinect sensor. Our

dataset contains both category-level and instance-level labels,

as well as both objects defined by their local texture and

textureless objects defined by their overall shape. Somewhat

surprisingly, we found that the global model outperformed

the local-feature model across the range of tasks we tested,

including both category- and instance-level tasks. We found

marginally improved performance with a fused local and

global scheme; only in very few categories did the global

model perform poorly, and the local feature model provided

some benefit. We report on the computational advantage of

our pruning schemes, which significantly reduce the amount

of computation required in a multi-class global template

scheme.

II. RELATED WORK

A comprehensive review of the vast literature on object

detection and recognition is certainly beyond the scope of

this paper. Here we specifically review the topics relevant to

our method: bottom-up segmentation, local feature process-

ing, scanning window models, depth constraints, and generic

object detection.

A. Segmentation

Segmentation has been dominated by graph-based models,

posed either as an optimization graph-cut framework [6], [7]

or with a probabilistic graphical model such as a Markov

random field (MRF) [8], [9], [10]. In these approaches, the

image is modeled as an undirected graph at the level of

pixels. In the case of MRFs, node potentials describe local

evidence and edge potentials usually encourage smoothness

for neighboring pixels with the same label or similar inten-

sity. Several approaches to inference have been proposed,

such as graph cuts [11], belief propagation [12] and iterative

merging [13].

To incorporate bottom-up information and speed up com-

putation, the image is often over-segmented via superpixe-

lation [14], [15], [16], [17]. These approaches make use of

low-level cues and generate a large number of segments or

superpixels to ensure that segment boundaries are not lost;

this serves as a preprocessing step and most segmentation

models operate at the superpixel level for computational

efficiency.

Current state-of-the-art segmentation techniques on com-

plex datasets, such as the PASCAL segmentation challenge

[18], are framed as two step processes [7], [19]. First,

candidate segments, which can be part of an object, are

identified. The segmentation problem is then formulated as a

ranking problem over the candidate segments, which involves

computing segment-level features. Generative models that

incorporate naturally occuring power-law prior distributions

also exist [20].

B. Local feature models

A particularly effective image representation was devel-

oped in recent years. It is formed by computing statistics

from distinctive local image points. An effective example

is the SIFT feature [21] that has been shown to have

extraordinary descriptiveness on precise instance recognition

tasks, and has been designed with invariances to many

common nuisance parameters such as illumination and slight

viewpoint variation. Significant motivation for these architec-

tures arises from biology. Models of the early visual system

are frequently taken to integrate statistics over columns of

orientation selective units [22]. The bag of local visual words

(BoW) model [23] has been shown effective in representing

both images and regions. Recently, the naive Bayes nearest

neighbor (NBNN) algorithm [2] has been shown to have sur-

prisingly strong performance both in theory and in practice

on pure classification tasks (e.g., Caltech-101). The lack of

any model of geometry limits the utility of this approach

to detecting objects with only generic texture, or where the

spatial relationship of local features is discriminative.

C. Scanning window search models

For datasets featuring large pose variation and multiple

instance types in cluttered scenes, such as the PASCAL VOC

[18], state-of-the-art detection approaches have for several

years consisted of global feature sliding window detectors

[24], [3], [25]. These detectors work on a representation

of the image based on gradient statistics, like SIFT, but

consider such statistics over an object-scale window, not

in local patches. A classifier evaluates windows of a fixed

aspect ratio across locations and scales of an image pyramid.

One of the leading detectors augments the object models

with parts, which can be placed at some offset relative

to the root template, with fitting cost increasing with the

deformation [3]. Windows scored higher than a threshold are

considered object detections. These are further agglomerated

and pruned with non-maximum suppression, and sometimes

by considering additional cues such as inferred geometry of

the scene or the context provided by other detections [26].

For good localization accuracy, the coverage of the image

pyramid with considered windows must be dense, which

is computationally expensive. An important speedup for

deformable part models consists in “cascading” the detector

by only trying to fit a part at a location if the root filter

score and all part scores earlier in the cascade are past some

threshold [4].



D. Depth constraints

There have been many 3-D features proposed for recogni-

tion. Briefly, prominent techniques include spin images [27],

3-D shape context [28], and the recent VFH model [29].

While we have not directly employed 3-D local features in

the work reported here, this is anticipated future work.

A number of 2D/3D hybrid approaches have been recently

proposed. A multi-modal object detector in which 2D and

3D are traded off in a logistic classifier is proposed by

[30]. Their method leverages additional hand-crafted features

derived from the 3D observation such as “height above

ground” and “surface normal,” which provide contextual

information. Work such as [31] shows how to benefit from

3D training data in a voting based method. Fritz et al. [1]

extend branch-and-bound to 3D by adding size and support

surface constraints derived from the 3D observation.

Most prominently, a set of methods have been proposed

for fusing 2D and 3D information for the task of pedestrian

detection. The popular HOG detector [32] to disparity-based

features is extended by [33]. A late integration approach is

proposed by [34] for combining detectors on the appearance

as well as depth image for pedestrian detection. Instead of

directly learning on the depth map, [35] uses a depth statis-

tic that learns to enforce height constraints of pedestrians.

Finally, [36] explores pedestrian detection by using stereo

and temporal information in a Hough-voting framework, also

using scene constraints.

The use of both visual and depth information for object

detection and classification in indoor scenes has recently

been proposed in [37], [38]. Specifically, spin images are

used to model the shape information and bag of local

image features are used to model the visual information,

and a classifier (such as an SVM) is trained to perform

detection/classification.

E. Generic object detection

Several recent works tackle the problem of generic object

detection, where the goal is to find objects without regard

for what they are. Some attempt to produce fully segmented

regions using complex boundary, color, texture, and context

cues [39], [40], while others use simpler cues that can be

computed quickly to produce bounding boxes that are likely

to contain objects [5]. The latter case may be immediately ap-

plied to prune the windows considered by a sliding window

detector, and has already been shown by the authors of [5] to

be effective in reducing the number of windows considered

by several common sliding window class detectors, without

an appreciable loss in the number of objects found. The cues

considered include a χ2 distance between color histograms

inside and surrounding the bounding box, a spectral saliency

measure [41] at multiple scales, and a measure of the amount

of superpixel straddling in the bounding box. The superpixels

use the same segmentation algorithm from [13], described

elsewhere in this work.

III. APPROACH

We experiment with a detector pipeline that includes both

local and global feature models. For local feature process-

ing, we first compute candidate segments using bottom-

up segmentation cues, using a fast segmentation method

that leverages depth images provided by the Kinect sensor

in conjunction with a support surface elimination method,

and then apply an NBNN classification scheme. For global

processing, we employ a domain-adapted visual attention

scheme that can identify salient regions in a scene, and use

this as a pre-filter for a HOG-based deformable template

scanning window detector. We then combine the detections

from the two pipelines to produce a list of bounding boxes

including both category and instance labels.

A. Segmentation

Segmentation as a preprocessing step can substantially

reduce the search time over bounding boxes, and can poten-

tially increase the robustness of our algorithm as the resulting

segments are often tighter than bounding boxes produced

by a branch-and-bound search. We use a depth-enhanced

segmentation process as a source of proposed candidate

regions for local feature descriptor extraction and NBNN

classification.

For computational efficiency we choose to base our seg-

mentation method on a graph-based segmentation scheme, as

described in [13]. In their framework, a graph is constructed

where the nodes correspond to pixels and the edges are

defined between select neighboring pixels. Edge weights are

the L2-norms between the intensity of pixels. The graph then

serves as the input into the segmentation algorithm, which

iteratively merges adjacent components whose connecting

edge weights are small when compared to the internal

differences of the two components.

The method, however, has limitations; in cases where RGB

information gives the wrong cue (for example, in scenarios

with shadows or transparent objects), the algorithm will gen-

erate incorrect segments. The availability of depth data can

be helpful in these situations, and the edge weights described

above can be modified to include depth information.

Rao et al. [42] propose an extension to the graph-based

segmentation framework by augmenting the intensity of a

pixel with a fourth dimension from the depth value, and

setting edge weights to a weighted L2-norm. The intuition

behind the extension is that pixels with the same depth should

be in the same component. However, in the extreme case

where the weighting of the depth channel vastly dominates

the weighting of the color channels, the components become

level sets of depth. This is undesirable as a tabletop or a

piece of wall will get segmented into different slices (see

Fig. 2.

We propose to add another distance metric based on the

depth gradient. The intuition here is that pixels with the same

depth gradient (ie, lying on the same plane) should be in the

same component. The final edge weight between pixels pi

and pj is



||I(pi)− I(pj)||2 +c1|D(pi)−D(pj)|+c2|∂D(pi)−∂D(pj)|,
(1)

where I is the intensity, D is the depth map, ∂D is the

approximated depth gradient evaluated along the direction

from pi to pj , and c1, c2 are coefficients for weighting the

two metric extensions. We found that setting c1 and c2 to 20

and 0.5 gives the best results.

Given that scenes in our dataset consist of a table with

objects on top, we post-process the segments to identify the

table surface. We first assume the camera angle is upright and

the table’s normal vector points upward. We then fit planes

to each segment, and select one to be the table that has a

desired normal and is flat. The segments immediately above

the table are then aggregated, and disjoint components are

added to the list of candidate regions. This last step aims to

combine different parts of an object (for example, the body of

a bottle is likely to be separate from the lid due to dissimilar

color and depth).

B. Local Pipeline

On detected regions from the segmentation path, we apply

a local feature NBNN model. Our local pipeline takes the

segmentation result, represented as image regions, as possi-

ble object proposals, and predicts object labels (including

background) for each region. In the training phase, local

image descriptors are extracted from image regions that

correspond to objects of each class. For each object proposal

in the testing phase, we extract descriptors d1, d2, · · · , dn

from the corresponding image region. The score of each class

c ∈ C is then computed as

score(c) =
n∑

i=1

‖di −NNc(di)‖
2 (2)

where NNc(di) is the nearest neighbor of di in the training

local descriptors that belong to c. A smaller score implies

a higher probability that the proposal belongs to the class.

To enforce depth constraints within an NBNN paradigm, we

follow the method outlined in [1], with category and instance

size estimated directly from the available 3-D training data.

Notice that the original NBNN method [2] is designed

for classification instead of detection. It is straightforward

to add a “background” class to the object labels, and treat

detection as a classification problem. However, in practice

this leads to very poor performance that results from the

incompleteness of labeling: there are cases when an object

is not labeled in the training data although it is present in

an image. This makes the background class contain local

features from objects too. During classification, there is a

high probability that these objects are then classified as

background, leading to a poor recall.

While a more exhaustive and accurate labeling of the data

would solve the problem (but would be very hard to carry

out, as we use crowd-sourcing for labeling), we follow a

simple approach that is similar to the idea of local feature

matching adopted in [21]. Specifically, we compute the ratio

(a) (b)

(c) (d)

(e) (f)

Fig. 2: Example of segmentation. (a), (b): RGB and depth

of input image. (c): Output segmentations using only RGB

information; note the incorrect segmentation caused by the

leftmost bottle’s shadow. (d): Output segmentation using

only absolute depth data. (e): Output segmentation with both

absolute depth and depth gradient. (f): Additional masks with

the assumption of a table top. The gray plane represents the

table; note how the different components of a bottle (lid,

body, label) are combined to form a better segmentation.

of the smallest score to the second smallest score, and reject

all proposals whose score ratio is greater than a certain

threshold. This worked well in practice: if an image region

belongs to a certain class, it should be distinctively different

from other classes while being similar to the correct class,

leading to a small ratio. In practice, we set the ratio threshold

to 0.85.

C. Shape template processing

We evaluate a sliding window HOG model for each class,

pruning locations that were not proposed by the generic

object detector stage. We follow the implementation of the

deformable part model detector [3] that scores candidate

windows with the LatentSVM formulation

fβ(x) = max
z

β · Φ(x, z) (3)

where β is a vector of model parameters and Φ(x, z) is a

feature function of the image window x and latent values



z, allowing for flexible part locations in the model. This

objective function is a semi-convex optimization problem;

the detector can be trained even though the latent information

is absent for negative examples.

In a large dataset, training a detector necessarily considers

only a small fraction of possible examples. For this reason,

the system performs rounds of data mining for samples of

hard negatives, providing the exact solution to training on

the entire dataset.

To featurize the image, we use a histogram of oriented

gradients (HOG) with both contrast-sensitive and contrast-

insensitive orientation bins, four different normalization fac-

tors, and 8-pixel wide cells. The descriptor is analytically

projected to just 31 dimensions, motivated by the analysis in

[3].

Raw detections go through non-maximum suppression—

a greedy selection of highest-scoring bounding boxes and

corresponding rejection of overlapping detections. This pro-

cedure results in a significant reduction of detections. As

our evaluation metric penalizes repeat detections, NMS is an

important step in the process.

D. Multi-class pruning

Additionally, we investigate a novel multi-class pruning

scheme for detection. Observe that a window of a certain

scale centered on a certain point should only be expected to

contain one object, which can be assigned a category and an

instance label. With this expectation, there is little reason to

consider every location with a detector of every class. For

example, if a location is highly likely to be detected as a

bottle, clock and bowl detectors can safely skip it.

Our multi-class pruning scheme builds on the scheme

of the cascaded LatentSVM detector, which only performs

expensive part fitting at a given location if the score of the

model root filter is past some threshold [26]. Additionally,

a low-dimensional PCA projection of the HOG feature and

model weights is used for additional speedup. We augment

this scheme to deal with multiple classes by first densely

scoring the root filter projections for all classes. This gives

the maximum score for all locations, and thus the detector(s)

most likely to have the highest score after full part fitting.

This expensive part fitting then only occurs for those detec-

tors that are within some threshold of the maximum score.

The threshold thus determines what percentage of the image

feature pyramid is pruned away.

E. Domain-adapted generic object detection

We construct an efficient mechanism for proposing win-

dows to our LSVM class detectors that are likely to contain

objects using a domain dependent improvement to [5]. In

that work, a number of local cues described in section II-E

are combined with naive Bayes in order to score bounding

boxes. We add to these a domain dependent size cue.

Our improvement is based on the observation that abso-

lute bounding box size has a particular distribution which

depends on the domain of application, while the local cues

employed by generic object detection implicitly define a

size distribution which is quite different. For example, our

tabletop images are typically cluttered with many small,

upright objects. Without properly incorporating this infor-

mation, generic object detection tends to produce bounding

boxes which enclose several adjacent objects.

Our size cue is the probability of a bounding box of the

observed size under the distribution defined by Gaussian ker-

nel density estimation on the sizes of ground truth bounding

boxes in the training set. The distribution is smoothed with

σ = 50.

As in [5], these scores may be used to form a distribution

over windows. Samples from this distribution are passed on

to a class specific detector. Thus higher scoring boxes are

more likely to be considered, while some lower scoring boxes

will also be considered. However, this procedure can create

a tendency to fixate on a few high scoring areas, even after

all meaningful windows in those areas have been examined.

To improve the rate at which objects are found, we take

several additional steps which integrate and improve the

post processing described in [5]. We replace the sampling

procedure entirely with a simple sorting one — boxes are

considered highest score first, and any boxes that have

high overlap with previous ones (defined by thresholding

intersection/union) are skipped. This inexpensive procedure

ensures that the best windows are considered first and that

additional windows explore the space of bounding boxes

rather than sticking to a few highly salient objects.

Since boxes suggested by generic object detection do

not always line up with the boxes that a HOG detector

scores highest, even when they indicate the same objects, we

perform a local search around the generic boxes to improve

the chance of a detection. After converting a bounding box

to the best matching location in a feature pyramid, we

iteratively move to whichever of the four nearest neighbors

at the same scale in the pyramid scores highest in a part

cascade. We typically find a local maximum, and a detection,

if one exists, in less than five moves.

F. Category-sensitive fusion

Our final result is computed by taking the union of

detections from the local feature and global feature paths.

When computing non-maximum suppression of detections,

we provide exceptions for the case where an instance label

detection overlaps a category label detection and the instance

is a member of the category, so that our final output labels

a coke bottle both with the category label “bottle” and the

instance label “coca-cola”.

IV. EXPERIMENTS

A. Data Collection

We collected images of objects typically found in both

households and offices using the Microsoft Kinect sensor.

The dataset consists of 269 images used for training and 85

images used for testing and contains both textured objects

appropriate for instance recognition tasks, and untextured

objects appropriate for category-level recognition. We in-

clude textured objects such as Coca-Cola bottles, Listerine,
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Fig. 3: Pruning windows with a generic object detector. The

y-axis gives recall on the detections found by applying our

HOG LSVM class detectors to a dense grid of windows. The

x-axis gives the average number of windows proposed by a

generic object detector per image, at a particular threshold

of confidence. From bottom to top, the curves show: (a)

performance using the default system of [5] (green) (b)

performance using the using the domain-adapted method

(blue) (c) performance using the domain-adapted method

and suppressing overlapping boxes rather than sampling as

described in the text (red).

and Gatorade, and untextured object classes such as pot,

clock, clipboard and plate. The images were collected in a

controlled environment: they were all captured on office table

tops with a relatively uncluttered background. Although the

environment is controlled there is much variability in the

pose and location of the objects. In addition, objects were

often photographed in groups arranged in such a way that

some of the objects were occluded.

We used crowd sourcing on Amazon Mechanical Turk

(AMT) in order to label the training data we collected with

bounding boxes. Amazon Mechanical Turk is a well-known

service for “Human Intelligence Tasks” (HIT). A labeler

verification step was employed to ensure the majority of

labelers agree on a box before it is accepted as a true label.

B. Evaluation

First, we evaluate the window proposal scheme described

in Section III-E. Figure 3 shows the effectiveness of domain-

adapted generic object detection on our data. By considering

only a few hundred windows per image, we can find (in the

sense of intersection/union > 0.5) nearly all objects that we

would find by searching a dense gridding of windows.

Finally, we report detection results. Figure 5 shows de-

tection results, in terms of the average precision (AP) for

each class; Figure 6 shows example detections overlaid on

test images. We find that the local-feature NBNN detector

alone has inferior performance, except in the cases of ‘clock’
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Fig. 4: Effect of increasing amount of pruning in the mul-

ticlass LSVM cascade. The y-axis shows the change in the

average precision, averaged across all classes, while the x-

axis shows the ratio by which computation is decreased. As

can be seen from the plot, 15-20% of the computation can

be eliminated with minimal loss in the average precision.

and ‘scissors’, where the global HOG detector fails to detect

anything. However, if the number of training examples is in-

sufficient for the LSVM, the local feature path could provide

an advantage, and so is worth considering. We also find that

the combined system is only slightly better than the HOG

detector alone. We compute the AP results when limited

to the detections that are found from a strict hill climbing

search starting from the top 1000 proposed windows from the

generic object detection method. The effect on the average

precision is minimal. However, the savings in computation

are significant: the detector only needs to be run for the

1000 boxes and a few neigbors. On average, 14.4% of the

image feature pyramid is evaluated in this fashion, yielding

a speed-up factor of two with a memoizing implementation.

We also performed a post-hoc evaluation of the multiclass

pruning scheme described in Section III-D. We can vary

the threshold to obtain increasing amounts of pruning in the

cascade. Figure 4 shows the average loss in AP at varying

thresholds. As can be seen from the plot, a further 15-20%

of the computation can be eliminated with minimal loss in

the average precision.

V. CONCLUSIONS

We have compared local and global feature models for

robotic recognition of household objects at both a category

and instance level. Our method includes both a local fea-

ture pipeline, based on a naive Bayes classification model,

and a more holistic, template-and-deformable-parts model

typically employed in a scanning window fashion. We base

our implementation on the recently available Kinect sensor,

which provides reliable depth estimates of indoor scenes;

depth cues provide segmentation and size constraints to our

method. Depth affinity is used to modify the appearance term

in a segmentation-based proposal step, and size priors are

imposed on object classes to prune false positives.

For the categories and instances we investigated, we found

few examples where the local feature path outperformed



Fig. 5: Comparison of average precision (AP) for several detectors: LF : only local feature NBNN, HOG: only scanning-

window HOG LSVM, LF +HOG: proposed system combining both pipelines, and generic+LF +HOG: combined system

with bounding boxes pre-filtered by the generic object detector. The average AP over all classes is LF = .25, HOG = .76,

LF + HOG = .77, generic + LF + HOG = .76.

Fig. 6: Each row shows sample detections on a test scene. From left to right: (1) human annotations, (2) local feature NBNN

(LF ), (3) our method.



the holistic path. This may be due in part to our training

regime, where a sufficient amount of training examples were

available for SVM learning; were we to re-evaluate in a

regime with only one or two training images per label, the

NBNN model might dominate the HOG LatentSVM path.

(Such experiments are future work.)

To enable efficient multi-class use of scanning-window

deformable-parts models, we proposed two multi-class prun-

ing schemes. We showed how a domain-adapted generic

object detection scheme could prune unlikely windows,

reducing the number of windows significantly with only a

modest loss in AP. We also developed a multi-class extension

of the LSVM cacade, where only the most likely class is

considered at a given window, further reducing computation

by a factor of 10-20%.

Our method is able to handle relatively cluttered scenes

involving multiple objects with varying levels of surface tex-

ture, and can efficiently employ multi-class scanning window

search; our system should serve as a starting point for tasks

involving object interaction in everyday environments.
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