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ABSTRACT
In this paper, we propose a novel approach to organize image
search results obtained from state-of-the-art image search
engines in order to improve user experience. We aim to
discover exemplars from search results and simultaneously
group the images. The exemplars are delivered to the user
as a summary of search results instead of the large amount
of unorganized images. This gives the user a brief overview
of search results with a small amount of images, and helps
the user to further find the images of interest. We adopt the
idea of affinity propagation and design a fast sparse affinity
propagation algorithm to find exemplars that best represent
the image search results. Experiments on real-world data
demonstrate the effectiveness of our method both visually
and quantitatively.

Categories and Subject Descriptors
H.3.3 [Information Systems]: Information Search and Re-
trieval; I.4.0 [Computing Methodologies]: Image Pro-
cessing and Computer Vision

General Terms
Algorithms
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1. INTRODUCTION
With the explosive development of the Internet technol-

ogy, we are able to find a large amount of information via
simple queries using state-of-the-art search engines such as
Google, Yahoo, Live search, etc. Recent years have wit-
nessed a quick development of the text/document search,
and as recent developments in digital media technology have
made the production of digital images much easier and more

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM ’08, October 27–November 1, 2008, Vancouver, BC, Canada
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$5.00.

popular, efficient image search have become an interesting
issue in the multimedia research area. A lot of attention has
been paid to more accurate image searching, such as per-
forming PageRank [6] on images to search for most relevant
images the user is interested in, or adopting both visual and
textual information [3].

An important issue independent from image searching al-
gorithms is that, assume that the image search results are
given (which often involves a large number of images), how
can we efficiently present them to the user? Traditionally,
most search engines return a ranked list of images, which
may ramble on for tens of web pages, leading to an ex-
haustive user experience. To improve this, Some works on
clustering images such as [1, 5] have been proposed to im-
prove user experience by organizing image search results into
groups each corresponding to a different view of the search
result. However, these works are mainly based on the clas-
sical clustering algorithms, and although they can produce
a more organized result, how to present the clusters to the
user is still an open problem since the number of images in
each cluster may still be large.

In this paper, instead of simple clustering, We aim to dis-
cover representative images, which we call “exemplars”, from
search results and simultaneously cluster the images into
groups characterized by these exemplars. The exemplars
are then delivered to the user in a single search result page
(usually containing about 20 images) that is much easier to
browse. Similar thought has also been used in scene summa-
rization [7]. Specifically, an exemplar should be as similar
as possible to the other images in the cluster it represents,
and exemplars should be as diverse to each other as possible
so that they carry little redundancy. To cluster the data
and find the exemplars simultaneously, we adopt the affin-
ity propagation (AP) idea. Also, considering the real-time
requirement of the search application, we will derive a fast
sparse AP algorithm that runs much faster than the original
AP algorithm.

In the following parts of the paper, we will first theo-
retically introduce the fast sparse affinity propagation algo-
rithm, and then apply it to the image search result cluster-
ing application to show the efficiency and effectiveness of the
method.

2. FAST SPARSE AFFINITY PROPAGATION

2.1 Notations
Formally, given a set of n data points X = {x1, x2, · · · , xn}



and the similarity measure s(xi, xj) between two data points,
we aim to cluster the data into m (m < n) clusters, each rep-
resented by an “exemplar” from X . These exemplars form a
subset of the original data set as Xe = {xe1, xe2, · · · , xem} ⊂
X . Denote the exemplar of each data point x in X by e(x),
we aim to maximize the sum of similarities between each
data and its exemplar as follows:

S(X ,Xe) =

nX
i=1

s(xi, e(xi)). (1)

The difference between finding exemplars and classical clus-
tering methods such as k-means is that, in classical clus-
tering problems, the centroid for each cluster may not nec-
essarily be a real data point (for example, in k-means, the
centroid is the mean of the data points in each cluster).
These centroids may not have a real-world interpretation.
For example, the mean of several images may not be a plau-
sible image. However, in the image search result clustering
problem, as we need to present each cluster to the user, it
is necessary to find an exemplar for each cluster instead of
those centroids that lack real-world meanings.

Finding exemplars has been an interesting issue in the
computational society. The most popular way may be the
K-centers algorithm such as [4]. Many of the algorithms
run in a greedy way to find K sub-optimal exemplars that
represents the data. Recently, Frey et al. proposed affinity
propagation to find exemplars from a set of data [2]. It has
been proved to be more effective than the classical meth-
ods. We will briefly review the AP algorithm, consider its
improvements, and apply it on the image search result clus-
tering problem.

2.2 Affinity Propagation
In brief, the AP algorithm propagates two kinds of infor-

mation between each two data points [2]: the “responsibil-
ity” r(i, k) sent from data point i to data point k, which
reflects how well k serves as the exemplar of i considering
other potential exemplars for i, and the “availability” a(i, k)
sent from data point k to data point i, which reflects how
appropriate i chooses k as its exemplar considering other
potential points that may choose k as their exemplar. The
information are updated in an iterative way as

r(i, k) := s(xi, xk)−max
k′ 6=k
{a(i, k′) + s(xi, xk′)},

a(i, k) := min{0, r(k, k) +
X

i′ /∈{i,k}

max{0, r(i′, k)}}. (2)

The self-availability is updated in a slightly different way as

a(k, k) :=
X
i′ 6=k

max{0, r(i′, k)}. (3)

Upon convergence, the exemplar for each data point xi is
chosen as e(xi) = xk where k maximizes the following crite-
rion:

arg max
k

a(i, k) + r(i, k). (4)

The justification of the AP algorithm roots from the max-
sum algorithm in a factor graph constructed from the data.
We refer to the supplement materials of [2] for detailed dis-
cussions. Although AP still does not guarantee global op-
timum, several experiments in [2] have shown its consistent
superiority over the previous algorithms.

The original AP algorithm takes the full similarity matrix
to perform propagation. In each stage, there are generally
n2 data pairs whose responsibility and availability values
need to be calculated, resulting in a computation complex-
ity of O(n2T ) where T is the number of iterations. This
greatly affects the speed of the algorithm especially when
the number of data points is large. On the other hand, when
the data are sparsely related because the similarity between
some data points are unknown or be −∞, the affinity prop-
agation algorithm can be adjusted to utilize the sparsity.
This is achieved by constructing a sparse graph structure
G = 〈V, E〉, where the vertices are data points and the edges
E contains parts of the pairwise edges between any two of
the data points. It has been pointed out in [2] that the spar-
sity will lead to faster calculation since the propagation of
responsibility and availability only needs to be performed on
the existing edges.

One may easily raise the question: if the sparsity is able
to boost the speed, can we actively create a sparse graph to
perform affinity propagation and to minimize the deterio-
ration of the sum-of-similarity measure from the non-sparse
case? However, to the best of our knowledge, the sparsity
has up to now been considered only as a property of certain
problems, and there has not been any method that actively
utilizes sparsity to speed up the propagation procedure when
the full similarity matrix is obtainable. In the following part,
we will propose a new way to construct a sparse graph and
perform affinity propagation faster than the classical AP al-
gorithm.

2.3 Two-stage Fast Sparse AP
The key point to benefit from both the effectiveness of

the AP algorithm and the sparsity of the similarity matrix
is to choose the appropriate edges between data points. Our
thought is based on two aspects: (1) for two data points that
are far apart, if we pre-assume that neither of them chooses
the other as exemplar, whether to add an edge between the
two data points does not change the final result. Thus the
propagation algorithm may be boosted if we are able to dis-
card these edges; (2) data points that serves as good ex-
emplars locally may be candidates for exemplars globally.
Based on these, our method mainly consists of two stages:
sparse graph construction and iterative edge refinement.

Sparse Graph Construction. we first construct a sparse
graph structure 〈V, E〉 similar to the K-nearest neighbor ap-
proach: if point xi is among the K points that has the largest
similarity with point xj , then xi, xj are connected by an edge
(i, j). This generally leads the edge set E to have roughly
Kn edges (as the K-nearest neighbors are not symmetric,
there may be more than K edges connecting to each data
point xi). Usually, we choose the parameter K to be much
smaller than the number of data points. This leads to a very
sparse graph, and propagation on it only takes computation
complexity of O(nT1) where T1 is the number of iterations
AP takes. Although the number of iterations is difficult
to represent analytically, this complexity is generally linear
with respect to n.

The problem with AP on a sparse graph is that, for a data
point connecting K neighbors, it can and only can be exem-
plar of K +1 data points (its neighbors and itself). Thus for
a graph constructed in a K-nearest neighbor way, there are
at least n/K exemplars. This may result in too more exem-
plars than we expect to find. Thus, we will consider refining



(a) Original data (b) AP, 146.69s

(c) FSAP Stage 1, 10.53s (d) FSAP Stage 2, 11.99s

Figure 1: Toy 2-D data. “×” indicate exemplars and
colors indicate clusters.

the edges so that the number of exemplars is reduced.
Iterative Edge Refinement. We consider the exem-

plars from the first stage as the candidates for final exem-
plars, and consider the other data points as non-exemplars.
A new graph structure is constructed who adopts three cri-
teria to determine edges:

(1) If candidate xi is the exemplar of xk, then xi, xk are
connected by an edge (xi, xj).

(2) For two candidates xi, xj , if there exists two data
points xk, xl that satisfy s(xk) = xi, s(xl) = xj (i.e., they
take xi, xj as their exemplar respectively) and are K-nearest
neighbor to each other, then xi, xj are connected by an edge;

(3) For two candidates xi, xj , if they are connected by
criterion 2, then all data points that choose xi as exemplar
are connected to xj , and vise versa.

Affinity propagation on this graph is able produce fewer
exemplars than the previous graph. Multiple exemplar can-
didates may merge into one group because nearby candi-
date and the corresponding data points are connected by
criterion 3. Also, the graph constructed in this way pre-
serves the advantage of sparsity: The edges between can-
didates are sparse because only nearby ones are connected;
also, there are no edges connecting two data points if nei-
ther are candidates; for non-candidate points, they are only
connected to its exemplar candidate in the previous stage
and the nearby few candidates. It is difficult to analytically
calculate how many edges there are exactly. However, em-
pirically we find that the edges are roughly proportional to
n, thus the computational complexity is about O(nT2) where
T2 is the number of iterations AP takes. This complexity is
also significantly lower than the original AP algorithm.

For data sets containing large number of data points, the
second stage may be iteratively performed so that the num-
ber of exemplars is reduced to a desirable value. In our ex-
periments where data sets contain about 1000 data points,
only one iteration is needed to find the desired number of
exemplars.

We adopt a simple toy data set to show the efficiency of
our method. 2000 data points are randomly sampled from
a 2-D rectangle as shown in Fig. 1(a), and we aim to find
30 exemplars among them. AP using full similarity matrix
(the similarity between two data points are calculated as
the negative distance between them) took 146.69 seconds to
produce the final result as shown in Fig. 1(b). Using our

(a) (b)

(c) (d)

Figure 2: Visual results corresponding to query
“Flowers”, showing four exemplars and several other
images represented by the exemplars.

FSAP approach with initial neighborhood K = 15, we find
252 candidates in the first stage in 10.53 seconds, and 30
final exemplars in the second stage in 11.99 seconds, shown
respectively in Figs. 1(c) and 1(d). In general, our methods
takes only 15% of the processing time and achieves competi-
tive result against the original AP algorithm. The advantage
on computation time can be also verified in Fig. 3(a) where
the number of data points varies from 500 to 3500. It can
be seen that the time of FSAP is approximately linear to
the number of data points while AP takes much more time
to compute.

3. EXPERIMENTAL RESULTS
We use several real-world query results to show the po-

tential of our method. For data preparation, we used the
Google image search to find images with ten different query
strings the same with [3] and crawled the first 1000 of each
query’s returned images. Instead of the data such as Mona
Lisa used in e.g. [6], these images have a large diversity and
covers a wide range of appearances. Thus, we adopt the
color moments of each image’s HSV channel as the features
to capture the visual characteristics of each image. The
similarity between two images is considered as the negative
distance between their feature vectors. The neighborhood
number K is identically set to 15.

Figure 2 shows a typical result on the images obtained
from query “Flowers”. Due to limit of space we only provide
four exemplars and several other images that are represented
by each exemplar. It can be seen that these exemplars rep-
resent each cluster well: they show (a) images containing
small flowers, (b) pictures of flowers on a black background,
(c) brightly colored close-up shots, and (d) illustrations on
a white background, respectively. If a user wants to find
close-up shots that has vivid colors, the exemplars may lead
to the right subset c, eliminating other images such as (b)



500 1000 1500 2000 2500 3000 3500
0

100

200

300

400

500

Number of data points

Ti
m

e 
(s

ec
on

ds
)

 

 

FSAP
AP

(a) Toy data (↓)

1 2 3 4 5 6 7 8 9 10
0

5

10

15

query

tim
e 

(s
ec

on
ds

)

 

 

AP
FSAP

(b) Computation time (↓)

1 2 3 4 5 6 7 8 9 10
150

160

170

180

190

200

210

220

query

su
m

 o
f d

is
ta

nc
e

 

 

AP
FSAP
Kcenter(min)
Kcenter(max)

(c) Sum of distance (↓)

1 2 3 4 5 6 7 8 9 10
0.4

0.5

0.6

0.7

0.8

query

di
ve

rs
ity

 

 

AP
FSAP
Kcenter(min)
Kcenter(max)

(d) Diversity (↑)

Figure 3: Quantitative results: (a) the computa-
tional time of AP and FSAP on the toy data when
the number of data points varies; (b) the time used
to cluster each query; (c)(d) the sum of distance and
diversity value for each query. The arrows indicate
whether larger (↑) or smaller (↓) value is better.

or (d) that s/he may not be interested in. Figure 4 shows
several exemplars found for other queries.

To quantitatively evaluate the performance, we compare
our method with the affinity propagation algorithm using
full similarity matrix, and adopt the classical k-center algo-
rithm [4] as the baseline. Three criteria, including compu-
tation time, representative and diversity scores of the exem-
plars, are adopted for quantitative comparison. The com-
parison results are shown in Fig. 3(b)-(d). The sum of dis-
tances between data points and their exemplars, which is
the negative of Eqn. 1, is used to evaluate how well ex-
emplars represent other images. The median value of dis-
tance between exemplars is used to evaluate the diversity
of exemplars. We run the k-center algorithm 100 times and
report the best and worst result here. We also compared
the computational time of the classical AP and our FSAP
method. The results are shown in Fig. 3. It can be seen that
our method achieves competitive representative and diver-
sity scores compared with AP algorithm using full matrix,
but takes significantly less time. In the meantime, both
of them perform competitively against even the best result
of the k-center algorithm, showing the effectiveness of the
affinity propagation approach.

It is worth pointing out that, although we do not adopt
other information such as surrounding textual feature [3]
for images, they can be naturally embedded in our method
by modifying the similarity measure so that more informa-
tion is considered. However, as our paper mainly focuses on
the exemplar finding method itself, detailed discussion on
choosing features is beyond the scope of the paper.

4. CONCLUSION

Figure 4: Representative exemplars, each row corre-
sponding to queries“Elephants”, “Railways”, “Snow-
Mountain”, and “FlyingEagle” respectively.

How to present image search results to the user is an inter-
esting issue in real-world applications. In this paper, we pro-
posed a new clustering method based on fast sparse affinity
propagation to enhance the presentation. We aim to cluster
the search into several groups each represented by an exem-
plar, and by adopting affinity propagation, our method is
able to find a set of exemplars that well represents the large
amount of images within a reasonable time. This gives us
possibility to show the user a few representative images in-
stead of a large number of unorganized image search results
and can improve the user experience.

In the future work, we are planning to incorporate more
information such as the textual data and image features
other than color moments to better characterize the simi-
larity between two images, so the clustering may be more
accurate and have better semantic interpretation. We also
plan to perform user-experience based evaluation to more
accurately test the performance of our method.
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