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Abstract

Many applications in computer vision measure the similarity between images or
image patches based on some statistics such as oriented gradients. These are of-
ten modeled implicitly or explicitly with a Gaussian noise assumption, leading to
the use of the Euclidean distance when comparing image descriptors. In this pa-
per, we show that the statistics of gradient based image descriptors often follow
a heavy-tailed distribution, which undermines any principled motivation for the
use of Euclidean distances. We advocate for the use of a distance measure based
on the likelihood ratio test with appropriate probabilistic models that fit the em-
pirical data distribution. We instantiate this similarity measure with the Gamma-
compound-Laplace distribution, and show significant improvement over existing
distance measures in the application of SIFT feature matching, at relatively low
computational cost.

1 Introduction

A particularly effective image representation has developed in recent years, formed by computing
the statistics of oriented gradients quantized into various spatial and orientation selective bins. SIFT
[14], HOG [6], and GIST [17] have been shown to have extraordinary descriptiveness on both in-
stance and category recognition tasks, and have been designed with invariances to many common
nuisance parameters. Significant motivation for these architectures arises from biology, where mod-
els of early visual processing similarly integrate statistics over orientation selective units [21, 18].

Two camps have developed in recent years regarding how such descriptors should be compared. The
first advocates comparison of raw descriptors. Early works [6] considered the distance of patches to
a database from labeled images; this idea was reformulated as a probabilistic classifier in the NBNN
technique [4], which has surprisingly strong performance across a range of conditions. Efficient
approximations based on hashing [22, 12] or tree-based data structures [14, 16] or their combination
[19] have been commonly applied, but do not change the underlying ideal distance measure.

The other approach is perhaps the more dominant contemporary paradigm, and explores a quantized-
prototype approach where descriptors are characterized in terms of the closest prototype, e.g., in
a vector quantization scheme. Recently, hard quantization and/or Euclidean-based reconstruction
techniques have been shown inferior to sparse coding methods, which employ a sparsity prior to
form a dictionary of prototypes. A series of recent publications has proposed prototype formation
methods including various sparsity-inducing priors, including most commonly the L1 prior [15], as
well as schemes for sharing structure in a ensemble-sparse fashion across tasks or conditions [10]. It
is informative that sparse coding methods also have a foundation as models for computational visual
neuroscience [18].

Virtually all these methods use the Euclidean distance when comparing image descriptors against
the prototypes or the reconstructions, which is implicitly or explicitly derived from a Gaussian noise
assumption on image descriptors. In this paper, we ask whether this is the case, and further, whether
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(a) Histogram (b) Matching Patches

Figure 1: (a) The histogram of the difference between SIFT features of matching image patches from
the Photo Tourism dataset. (b) A typical example of matching patches. The obstruction (wooden
branch) in the bottom patch leads to a sparse change to the histogram of oriented gradients (the two
red bars).

there is a distance measure that better fits the distribution of real-world image descriptors. We
begin by investigating the statistics of oriented gradient based descriptors, focusing on the well
known Photo Tourism database [25] of SIFT descriptors for the case of simplicity. We evaluate
the statistics of corresponding patches, and see the distribution is heavy-tailed and decidedly non-
Gaussian, undermining any principled motivation for the use of Euclidean distances.

We consider generative factors why this may be so, and derive a heavy-tailed distribution (that we
call the gamma-compound-Laplace distribution) in a Bayesian fashion, which empirically fits well
to gradient based descriptors. Based on this, we propose to use a principled approach using the
likelihood ratio test to measure the similarity between data points under any arbitrary parameterized
distribution, which includes the previously adopted Gaussian and exponential family distributions
as special cases. In particular, we prove that for the heavy-tailed distribution we proposed, the
corresponding similarity measure leads to a distance metric, theoretically justifying its use as a
similarity measurement between image patches.

The contribution of this paper is two-fold. We believe ours is the first work to systematically ex-
amine the distribution of the noise in terms of oriented gradients for corresponding keypoints in
natural scenes. In addition, the likelihood ratio distance measure establishes a principled connection
between the distribution of data and various distance measures in general, allowing us to choose
the appropriate distance measure that corresponds to the true underlying distribution in an applica-
tion. Our method serves as a building block in either nearest-neighbor distance computation (e.g.
NBNN [4]) and codebook learning (e.g. vector quantization and sparse coding), where the Euclidean
distance measure can be replaced by our distance measure for better performance.

It is important to note that in both paradigms listed above – nearest-neighbor distance computation
and codebook learning – discriminative variants and structured approaches exist that can optimize a
distance measure or codebook based on a given task. Learning a distance measure that incorporate
both the data distribution and task-dependent information is the subject of future work.

2 Statistics of Local Image Descriptors

In this section, we focus on examining the statistics of local image descriptors, using the SIFT
feature [14] as an example. Classical feature matching and clustering methods on SIFT features
use the Euclidean distance to compare two descriptors. In a probabilistic perspective, this implies
a Gaussian noise model for SIFT: given a feature prototype µ (which could be the prototype in
feature matching, or a cluster center in clustering), the probability that an observation x matches the
prototype can be evaluated by the Gaussian probability

p(x|µ) ∝ exp

(
‖x− µ‖22

2σ2

)
, (1)
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Figure 2: The probability values of the GCL, Laplace and Gaussian distributions via ML estimation,
compared against the empirical distribution of local image descriptor noises. The figure is in log
scale and curves are normalized for better comparison. For details about the data, see Section 4.

where σ is the standard deviation of the noise. Such a Gaussian noise model has been explicitly or
implicitly assumed in most algorithms including vector quantization, sparse coding (on the recon-
struction error), etc.

Despite the popular use of Euclidean distance, the distribution of the noise between matching SIFT
patches does not follow a Gaussian distribution: as shown in Figure 1(a), the distribution is highly
kurtotic and heavy tailed, indicating that Euclidean distance may not be ideal.

The reason why the Gaussian distribution may not be a good model for the noise of local image
descriptors can be better understood from the generative procedure of the SIFT features. Figure
1(b) shows a typical case of matching patches: one patch contains a partially obstructing object
while the other does not. The resulting histogram differs only in a sparse subset of the oriented
gradients. Further, research on the V1 receptive field [18] suggests that natural images are formed
from localized, oriented, bandpass patterns, implying that changing the weight of one such building
pattern may tend to change only one or a few dimensions of the binned oriented gradients, instead
of imposing an isometric Gaussian change to the whole feature.

2.1 A Heavy-tailed Distribution for Image Descriptors

We first explore distributions that fits such heavy-tailed property. A common approach to cope with
heavy-tails is to use the L1 distance, which corresponds to the Laplace distribution

p(x|µ;λ) ∝ λ

2
exp (−λ|x− µ|) . (2)

However, the tail of the noise distribution is often still heavier than the Laplace distribution: empir-
ically, we find the kurtosis of the SIFT noise distribution to be larger than 7 for most dimensions,
while the kurtosis of the Laplace distribution is only 3. Inspired by the hierarchical Bayesian models
[11], instead of fixing the λ value in the Laplace distribution, we introduce a conjugate Gamma prior
over λ modeled by hyperparameters {α, β}, and compute the probability of x given the prototype µ
by integrating over λ:

p(x|µ;α, β) =

∫
λ

λ

2
e−λ|x−µ|

1

Γ(α)
λα−1βαe−βλ dλ

=
1

2
αβα(|x− µ|+ β)−α−1. (3)

This leads to a heavier tail than the Laplace distribution. We call Equation (3) the Gamma-
compound-Laplace (GCL) distribution, in which the hyperparameters α and β control the shape
of the tail. Figure 2 shows the empirical distribution of the SIFT noise and the maximum likelihood
fitting of various models. It can be observed that the GCL distribution enables us to fit the heavy
tailed empirical distribution better than other distributions. We note that similar approaches have
been exploited in the compressive sensing context [9], and are shown to perform better than using
the Laplace distribution as the sparse prior in applications such as signal recovery.

Further, we note that the statistics of a wide range of other natural image descriptors beyond SIFT
features are known to be highly non-Gaussian and have heavy tails [24]. Examples of these include
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derivative-like wavelet filter responses [23, 20], optical flow and stereo vision statistics [20, 8], shape
from shading [3], and so on.

In this paper we retract from the general question “what is the right distribution for natural images”,
and ask specifically whether there is a good distance metric for local image descriptors that takes
the heavy-tailed distribution into consideration. Although heuristic approaches such as taking the
squared root of the feature values before computing the Euclidean distance are sometimes adopted
to alleviate the effect of heavy tails, there lacks a principled way to define a distance for heavy-
tailed data in computer vision to the best of our knowledge. To this end, we start with a principled
similarity measure based on the well known statistical hypothesis test, and instantiate it with heavy-
tailed distributions we propose for local image descriptors.

3 Distance For Heavy-tailed Distributions

In statistics, the hypothesis test [7] approach has been widely adopted to test if a certain statistical
model fits the observation. We will focus on the likelihood ratio test in this paper. In general, we
assume that the data is generated by a parameterized probability distribution p(x|θ), where θ is the
vector of parameters. A null hypothesis is stated by restricting the parameter θ in a specific subset
Θ0, which is nested in a more general parameter space Θ. To test if the restricted null hypothesis
fits a set of observations X , a natural choice is to use the ratio of the maximized likelihood of the
restricted model to the more general model:

Λ(X ) = L(θ̂0;X )/L(θ̂;X ), (4)

where L(θ;X ) is the likelihood function, θ̂0 is the maximum likelihood estimate of the parameter
within the restricted subset Θ0, and θ̂ is the maximum likelihood estimate under the general case.

It is easily verifiable that Λ(X ) always lies in the range [0, 1], as the maximum likelihood estimate
of the general case would always fit at least as well as the restricted case, and that the likelihood
is always a nonnegative value. The likelihood ratio test is then defined as a statistical test that
rejects the null hypothesis when the statistic Λ(X ) is smaller than a certain threshold α, such as the
Pearson’s chi-square test [7] for categorical data.

Instead of producing a binary decision, we propose to use the score directly as the generative sim-
ilarity measure between two single data points. Specifically, we assume that each data point x is
generated from a parameterized distribution p(x|µ) with unknown prototype µ. Thus, the statement
“two data points x and y are similar” can be reasonably represented by the null hypothesis that the
two data points are generated from the same prototype µ, leading to the probability

q0(x, y|µxy) = p(x|µxy)p(y|µxy). (5)
This restricted model is further nested in the more general model that generates the two data points
from two possibly different prototypes:

q(x, y|µx, µy) = p(x|µx)p(y|µy), (6)
where µx and µy are not necessarily equal.

The similarity between the two data points x and y is then defined by the the likelihood ratio statistics
between the null hypothesis of equality and the alternate hypothesis of inequality over prototypes:

s(x, y) =
p(x|µ̂xy)p(y|µ̂xy)

p(x|µ̂x)p(y|µ̂y)
, (7)

where µ̂x, µ̂y and µ̂xy are the maximum likelihood estimates of the prototype based on x, y, and
{x, y} respectively. We call (7) the likelihood ratio similarity between x and y, which provides
us information from a generative perspective: two similar data points, such as two patches of the
same real-world location, are more likely to be generated from the same underlying distribution,
thus have a large likelihood ratio value. In the following parts of the paper, we define the likelihood
ratio distance between x and y as the square root of the negative logarithm of the similarity:

d(x, y) =
√
− log(s(x, y)). (8)

It is worth pointing out that, for arbitrary distributions p(x), d(x, y) is not necessarily a distance
metric as the triangular inequality may not hold. However, for heavy-tailed distributions, we have
the following sufficient condition in the 1-dimensional case:
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Theorem 3.1. If the distribution p(x|µ) can be written as p(x|µ) = exp(−f(x−µ))b(x), where
f(t) is a non-constant quasiconvex function w.r.t. t that satisfies f ′′(t) ≤ 0, ∀t ∈ R\{0}, then the
distance defined in Equation (8) is a metric.

Proof. First we point out the following lemmas:

Lemma 3.2. If a function d(x, y) defined on X×X→ R is a distance metric, then
√
d(x, y) is also

a distance metric.

Lemma 3.3. If function f(t) is defined as in Theorem 3.1, then we have:
(1) the minimizer µ̂xy = arg minµ f(x−µ) + f(y−µ) is either x or y.
(2) the function g(t) = min(f(t), f(−t))− f(0) is monotonically increasing and concave in R+ ∪
{0}, and g(0) = 0.

With Lemma 3.3, it is easily verifiable that d2(x, y) = g(|x−y|). Then, via the subadditivity of g(·)
we can reach a result stronger than Theorem 3.1 that d2(x, y) is a distance metric. Thus, d(x, y) is
also a distance metric based on Lemma 3.2. Note that we keep the square root here in conformity
with classical distance metrics, which we will discuss in the later parts of the paper. Detailed proofs
of the theorem and lemmas can be found in the supplementary material.

As an extreme case, when f ′′(t) = 0 (t 6= 0), the distance defined above is the square root of the
(scaled) L1 distance.

3.1 Distance for the GCL distribution

We use the GCL distribution parameterized by the prototype µ with fixed hyperparameters (α, β)
as the SIFT noise model, which leads to the following GCL distance between dimensions of SIFT
patches1:

d2(x, y) = (α+ 1)(log(|x− y|+ β)− log β) (9)

The distance between two patches is then defined as the sum of per-dimension distances. Intuitively,
while the Euclidean distance grows linearly w.r.t. to the difference between the coordinates, the GCL
distance grows in a logarithmic way, suppressing the effect of too large differences. Further, we have
the following theoretical justification which is a direct result of Theorem 3.1.:
Proposition 3.4. The distance d(x, y) defined in (9) is a metric.

3.2 Hyperparameter Estimation for GCL

In the following, we discuss how to estimate the hyperparameters α and β in the GCL distribution.
Assuming that we are given a set of one-dimensional data D = {x1, x2, · · · , xn} that follows the
GCL distribution, we estimate the hyperparameters by maximizing the log likelihood

l(α, β;D) =

n∑
i=1

(
log

α

2
+ α log β − (α+ 1) log (|xi|+ β)

)
(10)

The ML estimation does not have a closed-form solution, so we adopt an alternate optimization and
iteratively update α and β until convergence. Updating αwith fixed β can be achieved by computing

α← n

(
n∑
i=1

log(|xi|+ β)− n log(β)

)−1
. (11)

Updating β can be done via the Newton-Raphson method β ← β − l′(β)
l′′(β) , where

l′(β) =
nα

β
−

n∑
i=1

α+ 1

|xi|+ β
, l′′(β) =

n∑
i=1

α+ 1

(|xi|+ β)2
− nα

β2
(12)

1For more than two data points X = {xi}, it is generally difficult to find the maximum likelihood estimation
of µ as the likelihood is nonconvex. However, with two data points x and y, it is trivial to see that µ = x
and µ = y are the two global optimums of the likelihood L(µ; {x, y}), both leading to the same distance
representation in (9).
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3.3 Relation to Existing Measures

The likelihood ratio distance is related to several existing methods. In particular, we show that under
the exponential family distribution, it leads to several widely used distance measures.

The exponential family distribution has drawn much attention in the recent years. Here we focus on
the regular exponential family, where the distribution of data x can be written in the following form:

p(x) = exp (−dB(x, µ)) b(x), (13)

where µ is the mean in the exponential family sense, and dB is the regular Bregman divergence
corresponding to the distribution [2]. When applying the likelihood ratio distance on the distribution,
we obtain the distance

d(x, y) =
√
dB(x, µ̂xy) + dB(x, µ̂x,y) (14)

since µ̂x ≡ x and dB(x, x) ≡ 0 for any x. We note that this is the square root of the Jensen-Bregman
divergence and is known to be a distance metric [1]. Several popular distances can be derived in this
way. In the two most common cases, the Gaussian distribution leads to the Euclidean distance,
and the multinomial distribution leads to the square root of the Jensen-Shannon divergence, whose
first-order approximation is the χ-squared distance. More generally, for (non-regular) Bregman
divergences dB(x, µ) defined as dB(x, µ) = F (x) − F (µ) + (x − µ)F ′(µ) with arbitrary smooth
function F , the condition on which the square root of the corresponding Jensen-Bregman divergence
is a metric has been discussed in [5].

While the exponential family embraces a set of mathematically elegant distributions whose proper-
ties are well known, it fails to capture the heavy-tailed property of various natural image statistics,
as the tail of the sufficient statistics is exponentially bounded by definition. The likelihood ratio
distance with heavy-tailed distributions serves as a principled extension of several popular distance
metrics based on the exponential family distribution. Further, there are principled approaches that
connect distances with kernels [1], upon which kernel methods such as support vector machines may
be built with possible heavy-tailed property of the data taken into consideration.

The idea of computing the similarity between data points based on certain scores has also been seen
in the one-shot learning context [26] that uses the average prediction score taking one data point
as training and the other as testing, and vice versa. Our method shares similar merit, but with a
generative probabilistic interpretation. Integration of our method with discriminative information or
latent application-dependent structures is one future direction.

4 Experiments

In this section, we apply the GCL distance to the problem of local image patch similarity mea-
sure using the SIFT feature, a common building block of many applications such as stereo vision,
structure from motion, photo tourism, and bag-of-words image classification.

4.1 The Photo Tourism Dataset

We used the Photo Tourism dataset [25] to evaluate different similarity measures of the SIFT feature.
The dataset contains local image patches extracted from three scenes namely Notredame, Trevi
and Halfdome, reflecting different natural scenarios. Each set contains approximately 30,000
ground-truth 3D points, with each point containing a bag of 2d image patches of size 64 × 64
corresponding to the 3D point. To the best of our knowledge, this is the largest local image patch
database with ground-truth correspondences. Figure 3 shows a typical subset of patches from the
dataset.

The SIFT features are computed using the code in [13]. Specifically, two different normalization
schemes are tested: the l2 scheme simply normalizes each feature to be of length 1, and the thres
scheme further thresholds the histogram at 0.2, and rescales the resulting feature to length 1. The
latter is the classical hand-tuned normalization designed in the original SIFT paper, and can be seen
as a heuristic approach to suppress the effect of heavy tails.

Following the experimental setting of [25], we also introduce random jitter effects to the raw patches
before SIFT feature extraction by warping each image by the following random warping parame-
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Figure 3: An example of the Photo Tourism dataset. From top to bottom patches are sampled from
Notredame, Trevi and Halfdome respectively. Within each row, every adjacent two patches forms a
matching pair.
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Figure 4: The mean precision-recall curve over 20 independent runs. In the figure, solid lines are
experiments using features that are normalized in the l2 scheme, and dashed lines using features
normalized in the thres scheme. Best viewed in color.

ters: position shift, rotation and scale with standard deviations of 0.4 pixels, 11 degrees and 0.12
octaves respectively. Such jitter effects represent the noise we may encounter in real feature detec-
tion and localization [25], and allows us to test the robustness of different distance measures. For
completeness, the data without jitter effects are also tested and the results reported.

4.2 Testing Protocol

The testing protocol is as follows: 10,000 matching pairs and 10,000 non-matching pairs are ran-
domly sampled from the dataset, and we classify each pair to be matching or non-matching based on
the distance computed from different testing metrics. The precision-recall (PR) curve is computed,
and two values, namely the average precision (AP) computed as the area under the PR curve and
the false positive rate at 95% recall (95%-FPR) are reported to compare different distance measures.
To test the statistical significance, we carry out 20 independent runs and report the mean and stan-
dard deviation in the paper. We focus on comparing distance measures that presume the data to lie
in a vector space. Five different distance measures are compared, namely the L2 distance, the L1

distance, the symmetrized KL divergence, the χ2 distance, and the GCL distance.

The hyperparameters of the GCL distance measure are learned by randomly sampling 50,000 match-
ing pairs from the set Notredame, and performing hyperparameter estimation as described in Sec-
tion 3.2. They are then fixed and used universally for all other experiments without re-estimation.
As a final note, the code for the experiments in the paper will be released to public for repeatability.

4.3 Experimental Results

Figure 4 shows the average precision-recall curve for all the distances on the three datasets re-
spectively. The numerical results on the data with jitter effects are summarized in Table 1, with
statistically significant values shown in bold. Table 2 shows the 99% FPR on the data without jitter
effects2. We refer to the supplementary materials for other results on the no jitter case due to space
constraints. Notice that, the observed trends and conclusions from the experiments with jitter effects
are also confirmed on those without jitter effects.

The GCL distance outperforms other base distance measures in all the experiments. Notice that the
hyperparameters learned from the notredame set performs well on the other two datasets as well,

2As the accuracy for the no jitter effects case is much higher in general, 99% FPR is reported instead of
95% FPR as in the jitter effect case.
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AP L2 L1 SymmKL χ2 GCL
trevi-l2 96.61±0.16 98.08±0.10 97.40±0.12 97.69±0.11 98.33±0.09
trevi-thres 97.23±0.12 98.05±0.10 97.40±0.11 97.71±0.11 98.21±0.10
notre-l2 95.90±0.14 97.83±0.10 96.96±0.12 97.31±0.11 98.19±0.10
notre-thres 96.76±0.13 97.84±0.10 97.05±0.12 97.39±0.11 98.07±0.10
halfd-l2 94.51±0.16 96.75±0.11 94.87±0.15 95.42±0.14 98.19±0.10
halfd-thres 95.55±0.14 96.90±0.11 95.08±0.16 95.64±0.14 97.21±0.10

95%-FPR L2 L1 SymmKL χ2 GCL
trevi-l2 23.61±1.14 12.71±0.83 17.58±0.96 15.85±0.74 10.52±0.73
trevi-thres 19.23±0.84 13.08±0.91 17.57±0.98 15.66±0.77 11.21±0.71
notre-l2 26.43±1.03 14.27±1.09 19.56±1.00 17.70±1.08 11.58±1.00
notre-thres 21.88±1.21 14.49±1.25 19.07±1.11 17.38±0.95 12.09±1.11
halfd-l2 36.34±0.98 24.11±1.13 34.55±0.96 31.62±1.09 19.76±1.03
halfd-thres 31.44±1.20 23.14±0.13 33.71±1.05 30.56±1.13 20.74±1.16

Table 1: The average precision (above) and the false positive rate at 95% recall (below) of different
distance measures on the Photo Tourism datasets, with random jitter effects. A larger AP score and
a smaller FPR score are desired. The l2 and thres in the leftmost column indicate the two different
feature normalization schemes.

99%-FPR L2 L1 SymmKL χ2 GCL
trevi-l2 11.36±1.65 3.44±0.75 8.02±1.04 8.02±1.08 2.42±0.58
trevi-thres 7.14±1.31 3.24±0.69 7.93±1.11 5.06±0.97 2.23±0.48
notre-l2 19.69±1.93 6.09±0.72 14.81±1.66 9.40±1.04 4.16±0.57
notre-thres 11.9±1.19 5.17±0.58 13.11±1.39 8.24±1.12 3.72±0.56
halfd-l2 44.55±9.42 34.01±2.10 43.51±1.07 40.53±1.12 26.06±2.25
halfd-thres 40.58±1.63 32.30±2.28 42.51±1.22 39.28±1.49 26.36±2.50

Table 2: The false positive rate at 99% recall of different distance measures on the Photo Tourism
datasets without jitter effects.

indicating that they capture the general statistics of the SIFT feature, instead of dataset-dependent
statistics. Also, the thresholding and renormalization of SIFT features does provide a significant
improvement for the Euclidean distance, but its effect is less significant for other distances. In fact,
the hard thresholding may introduce artificial noise to the data, counterbalancing the positive effect
of reducing the tail, especially when the distance measure is already able to cope with heavy tails.

We argue that the key factor leading to the performance improvement is taking the heavy tail prop-
erty of the data into consideration but not others. For instance, the Laplace distribution has a heavier
tail than distributions corresponding to other base distance measures, and a better performance of the
corresponding L1 distance over other distance measures is observed, showing a positive correlation
between tail heaviness and performance. Notice that the tails of distributions assumed by the base-
line distances are still exponentially bounded, and performance is further increased by introducing
heavy-tailed distributions such as the GCL distribution in our experiment.

5 Conclusion

While visual representations based on oriented gradients have been shown to be effective in many ap-
plications, scant attention has been paid to the issue of the heavy-tailed nature of their distributions,
undermining the use of distance measures based on exponentially bounded distributions. In this pa-
per, we advocate the use of distance measures that are derived from heavy-tailed distributions, where
the derivation can be done in a principled manner using the log likelihood ratio test. In particular,
we examine the distribution of local image descriptors, and propose the Gamma-compound-Laplace
(GCL) distribution and the corresponding distance for image descriptor matching. Experimental
results have shown that this yields to more accurate feature matching than existing baseline distance
measures.
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