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Abstract—Dimensionality reduction is an important issue in
many machine learning and pattern recognition applications, and
the trace ratio problem is an optimization problem involved in
many dimensionality reduction algorithms. Conventionally, the
solution is approximated via generalized eigenvalue decomposi-
tion due to the difficulty of the original problem. However, prior
works have indicated that it is more reasonable to solve it directly
than the conventional way. In this paper, we propose a theoretical
overview of the global optimum solution to the trace ratio
problem via the equivalent trace difference problem. Eigenvalue
perturbation theory is introduced to derive an efficient algorithm
based on the Newton-Raphson method. Theoretical issues on the
convergence and efficiency of our algorithm compared with prior
literature are proposed, and are further supported by extensive
empirical results.

Index Terms—Dimensionality reduction, trace ratio, eigenvalue
perturbation, Newton-Raphson method.

I. INTRODUCTION

ANY machine learning and pattern recognition appli-
cations involve processing data in a high-dimensional
space. For computational time, storage, de-noise and other
considerations, we often reduce the dimensionality of such
data in order to learn a model efficiently. Also, in many cases
it has been found that the data has low-dimensional structures
such as the manifold structure, so we are often interested to
find a reasonable low-dimensional representation of the data.
There are a number of supervised and unsupervised di-
mensionality reduction algorithms such as Linear Discriminant
Analysis (LDA), Kernelized LDA, Marginal Fisher Analysis,
Principal Component Analysis (PCA), ISOMAP, LLE, etc.
Many of these algorithms can be formulated into a fundamen-
tal optimization problem called the trace ratio problem, which
involves searching for a transform matrix W that maximizes
the trace ratio Tr[W7TS,W]/Tr[WTS,W] where S, and S,
are method related positive semidefinite matrices, together
with the constraint that the columns of W are unitary and
orthogonal. However, the trace ratio problem does not have
a closed-form global optimum solution directly. Thus, it is
conventionally approximated by solving a ratio trace problem
maxy Tr[(WTS,W)~Y(WT S, W)], which is essentially dif-
ferent and diverts from the original optimum value. Previous
works, such as [1], have showed that the optimum solution to
the original trace ratio problem is superior to the diverted one
in performance.

However, the trace ratio problem does not have a closed-
form solution. There have been some attempts to find the
global optimum solution: [2] pointed out that the original trace
ratio problem can be converted to a trace difference problem,
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and proposed a heuristic bisection way to find the solution.
Further, Wang et al. [1] proposed an iterative algorithm called
ITR that was empirically more efficient. However, except for
the convergence of these methods, much of the theoretical
nature is left undiscussed. In this paper, we aim to give a
theoretical view of the trace ratio / trace difference problems
by introducing the eigenvalue perturbation theory into the anal-
ysis. We then propose a new method that is both theoretically
and empirically proved to be more efficient than the previous
ones.

The following parts of the paper are organized as follows:
Section II introduces the trace ratio / trace difference prob-
lems and discusses their relationship. Section III explores the
property of the trace difference function, introduces the per-
turbation theory and proposes a new method. The convergence
of the method is also provided. In Section IV, we discuss the
theoretical explanation to previous algorithms and show the
superiority of our method. Experiments on object recognition
databases are presented in Section V. Finally, Section VI
concludes the paper.

II. THE TRACE RATIO PROBLEM
A. Trace Ratio, Ratio Trace, and Trace Difference

We introduce the trace ratio problem from the notion of
linear discriminant analysis (LDA). Given a set of n training
data points X = {z;}"; C R™ and the corresponding label
Y = {yi}q, where y; € {1,--- ,c} is the label of the data
point x;, LDA tries to find a low-dimensional representation
in R? via a linear transformation 2z’ = W%z (where W is a
m X d matrix) that maximizes the between-class scatter and
minimizes the within-class scatter at the same time:
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where m; and n; are respectively the mean and the number of
the data points belonging to the ¢-th class, and m is the mean
of all the data points. By defining the between-class covariance
matrix S, = > ¢ 2 (m; —m)(m;—m)” and the within-class
covariance matrix Sy, = > i, "4 (z; —my, ) (z; —my, )T the
problem (1) is equivalent to the following form:
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where T'r[-] denotes the matrix trace. Conventionally, we add
the constraint W7 = I to get a set of orthogonal and
normalized transform vectors.

Recently, Yan et al. proposed a uniform graph embedding
framework for several dimensionality reduction problems [3].
Generally, we want to find a low-dimensional representation
that minimizes the distance between certain pairs of data points



(x;, x;) with similarity weight S;;, and maximizes the distance
bet‘ween some otk'ler pairs (zi,zj) with p'enalty weight S,
This leads to finding a matrix W* that satisfies:
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Two graphs are used to model the problem. One is called
similarity graph: similarity matrix S whose ij-th element is
S;;, diagonal matrix D whose i-th diagonal element is D;; =
> ; Sij» and graph Laplacian L = D — S. The other is called
penalty graph with similarly defined S’, D’ and L’. With such
definition, the equation (3) can be written as
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A more extensive introduction of the graph embedding frame-
work can be found in [3].

The problems (2) and (4) are typical forms of a general
trace ratio problem, defined as follows:

Definition 1 (Trace Ratio). For two m X m positive semidefi-
nite matrices Sy, and S, the trace ratio problem is defined as
finding a m x d (d < m) transform matrix W* that satisfies
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We also assume that the rank of S; is larger than m — d,
i.e., the null space of S; has dimensionality less than d. This
is to make the trace ratio value finite. Actually, if the rank of
S; is smaller than d, we can find a transform matrix W that
satisfies Tr[WT S;W] = 0, which draws the trace ratio value
to infinity'. For completeness, we will also discuss the case
when the null space of S} has dimensionality equal to or larger
than d at the end of Section III.

The difficulty with the trace ratio problem is that it does
not have a closed-form solution. Thus, the commonly-used
solution is to solve an alternative ratio trace problem defined
as follows:

Definition 2 (Ratio Trace). For two m X m positive semidef-
inite matrices S, and S, the ratio trace problem is to find a
m X d (d < m) transform matrix W* that satisfies
W* = argmax Tr[(WT S W)Y (WS, W)]. (7
w
This problem can be efficiently solved by generalized
eigenvalue decomposition (GEVD) S,wy = BSjwy, where
OBk is the k-th largest generalized eigenvalue. The matrix
W is then constituted of the corresponding eigenvalues wg,
k=1,---,d. For example, LDA uses S, = S, and S; = S,
where S and S, are the interclass/intraclass covariance
matrices. Another version of LDA [4] uses S; = Sy, + Sb.

A simple way to find such W is to use the d eigenvectors corresponding
to the eigenvalue 0 of Sj.

When the reduced dimensionality d = 1, the trace ratio
and ratio trace problems are strictly equal, since W7 S,W
and WTS,W are both scalar values. When d > 1, denote
the columns of W by wj;, the ratio trace prol:;lem iteratively
finds the k-th column w; that maximizes %’;;’“ Thus it
can be seen as a greedy algorithm which essentially optimizes
DO “w’iT“Z’;;Ul This is different from the original trace ratio
problem, which can be written as:

Trw”s,w] YL wlS,w;
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As the superiority is not the main issue of this paper, we refer
to prior works [1] and [2] for the comparison between different
criterions. In brief, we expect that the optimum solution of the
trace ratio problem should be better than the greedy GEVD
solution. To solve the trace ratio problem directly, Guo et al.
have indicated that one can solve an equivalent trace difference
problem to find the global optimum of the trace ratio problem
[2]. We cite the theorem without proof as follows:

Theorem 1 (Thm.2 of [2]). To find the best trace ratio value
A* and matrix W, it is equivalent to solve the corresponding
trace difference problem: to find the zero point of the trace
difference function

fO) = max Tr(W? (s, - AS)W], ©

i.e., to solve a trace difference equation f(\) = 0. W* can
then be calculated as

W* = argmax Tr[W7 (S, — \*S))W].
WTW=I

(10)

B. Previous Works

Several methods have been proposed to solve the trace
ratio and trace difference problem. Guo et al. [2] introduced
the trace ratio and trace difference problems in the notion
of generalized Foley—Sammon transform. In their work, they
proposed to solve the trace difference equation in an iterative
way as follows:

1) Initialize A\; and Ay so that f(A\;) > 0> f(A2).

2) Calculate A = (A1 + A2)/2 and f()).

3) If f(A) >0, let \y = A, else let Ag = A,

4) Iterate until convergence.

It is easy to initialize Ay = 0, while Ay is a bit difficult
to initialize, because we do not actually know the optimum
trace ratio value. Thus, the method often turns to optimize an
equivalent trace ratio Tr[W7 S,W]/Tr[W7T(S,+S;)W]. The
proof to the equivalency can be found in [2]. In this way, we
can safely set Ay = 1.

Wang et al. [1] proposed an iterative algorithm called
Iterative Trace Ratio (ITR) to solve the trace ratio problem.
Given )\, at each iteration ¢, they search for a transform matrix
according to the trace difference as:

W, = argmax Tr[W7 (S, — \:S)W], (11)
WTW=I
and renew \;;1 as the trace ratio given by W;:
T Ts
Moy = LrIWe Sy Wil (12)
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The algorithm iterates until convergence. This algorithm is
empirically faster than the one in [2].

The problem of previous works is the absence of theoretical
discussion. Except for the convergence of the algorithm, little
theoretical foundation has been discussed before. In the next
section, we will first explore several characteristics of the trace
difference function f(\), and then derive an efficient algorithm
based on the Newton-Raphson method. We will also give a
theoretical explanation to the previous algorithms and show
the superiority of the new algorithm.

III. DECOMPOSED NEWTON’S METHOD

A. Property of f(\)
First, we have the following property about the trace differ-
ence function:

Lemma 1. The function f(\) is monotonic decreasing and
convex.

Proof: For any value A\; < Ay < Ag, denote W; =
arg maxyryy—; Tr[W7T (S, — X\iS;)W], we have

_ T _
f(>\1) = Wr}"ll%/le TT[W (Sp Alsl)W]
> TrWi (S, — \S)Wa)

FO2) + (g = A)Tr[WS S Wa].  (13)

The second term is nonnegative since S; is positive semidefi-
nite and Ay > A1, so we have

F1) = f(h2) 2 (Ao = M)Tr[Wy $Wa] 2 0. (14)
This proves the monotonic decreasing property of f(\).
Similarly, we have
(A3 = A)Tr[W3 S Wa] > f(A2) = f(A3) 2 0. (15)

Combine the two inequality (14) and (15) together, we have

1

fA2) < P
Thus the convexity is proved. [ ]

It is not difficult to verify that f(0) > 0 and f(4o00) <0,
so Lemma 1 guarantees that the zero point of f(\) exists. In
another word, the global optimum of the trace ratio problem
can be found if we are able to solve f(A) = 0. Moreover, if .S
is positive definite, the inequality above are all strict, and f(\)
is strictly monotonic decreasing, thus the solution is unique?.

Defining f(\) based on an optimization problem is some-
how inconvenient for analysis, so we search for an analytical
representation. This naturally leads us to consider the eigenval-
ues of the matrix S(\) = S, — AS;. Denote its m eigenvalues
and their corresponding eigenvectors by {f1,- -, mn} and
{wy, -+ ,wpn}, and an “index vector” i = (i1, -+ ,4,,) which
is a certain permutation of {1,--- ,m}, we have the following
lemma according to the eigenvalue decomposition analysis of
the matrix theory [5]:

[(As = A2) f(A1) + (A2 — A1) f(A3)]. (16)

2Note that it is sufficient but not necessary to require S; to be positive
definite. Actually, we can relax it to that the rank of S; is larger than m — d,
and similar results still holds.

Lemma 2. The trace difference function value f(\) is given by
the sum of the first d algebraically largest eigenvalues, and the
corresponding matrix W is formed by the first d corresponding
eigenvectors:

d
FO) =max " Bi,, W) =[wi,, - ,w,]. (17
k=1

Note that all the eigenvalues and eigenvectors are actually
functions of )\, since the matrix S is dependent on A. Thus,
it may be more accurate to write them as functions of A
such as B1()\), wi(A\). However, we omit the function-based
representation for simplicity here.

Lemma 2 indicates that we need find a proper A so that
the sum of the first m largest eigenvalues of S()\) equals
to zero. Still, we cannot find a direct closed-form solution,
SO we turn to an iterative way to solve it. First we observe
how the function value and the eigenvalues change when A
varies, by introducing perturbation theory [6] to analyze the
eigenvalues. Here we assume that all eigenvalues of S(\) are
simple eigenvalues: in the matrix theory, a simple eigenvalue
is an eigenvalue that has algebraic multiplicity 1. For such
eigenvalues, we have the following result:

Lemma 3. If 5(\) is a simple eigenvalue of S(\) =
Sp — AS; with its corresponding normalized eigenvector w(\)
(lw(N)|| = 1), the derivative of the eigenvalue is given by

B'(\) = —wT (N)Sw(\) <0. (18)

Proof: Here we give a brief proof to the lemma. For
more detailed discussion, see e.g. [7]. First, according to the
definition of eigenvalues, we have

(S — AS; — B Dw(X) = 0. (19)

Take the derivative of the right side w.r.t A\, we have
(=S = BN DwN) + (S, — AS; — BA)w'(X) = 0. (20)
Take the inner product of w(\) and the left side, we have

wh (A)[=S = B/ (N Iw(A) +w” (N)[Sp — ASy — B Tw'(A) = 0.
2D
Note that S, — AS; is symmetric, and |[w()\)|| = 1 so
w?' (M) w'(\) = 0, thus the second term of the left side equals
to zero. This leads to the simple form
wl (N)Siw(\) +wh (V) (MNw(N) = 0. (22)
Again, using ||w(\)|| = 1 we have w? (A3 (AN w(A) = B'(N).
Thus, we have
F'(\) = —wh (A\)Sw(A) <0. (23)
The inequality holds because .S; is positive semidefinite. Thus
the theorem is proved. [ ]
One might ask whether the assumption made on the eigen-
values may be too strong. Actually, in most real-world prob-
lems, the eigenvalues of the matrices involved are generally
simple eigenvalues so that Lemma 3 can be applied.



TABLE 1
THE ALGORITHM OF DECOMPOSED NEWTON’S METHOD

Input: Two positive semidefinite matrices S, and S

Output: Trace Ratio value A* and the transform matrix W*
Procedure:

. Initialize A\g = 0, t = O;

. Do eigenvalue decomposition of S, — A¢.S;

. Calculate the first-order approximations using (24) and (25).

. Renew A¢41 by solving fp(A) = 0.

A1 — M| <€ gotobyelset=t+ 1, goto2

. Output X* = ¢, and W* = maxyy oy Tr[WT(Sp — A*S)]W.

AN W~

B. The Proposed Method

Consider an iterative way to solve the trace difference
equation (9) given initial value \;, Lemma 3 enables us to use
the first-order Taylor expansion to approximate the eigenvalues
around \; as:

Br(\) = Br(Ne) + B (M)A = Ap),

for kK = 1,--- ,m. Using the Taylor expansion, we approx-
imate the trace difference function f(A) as the sum of the
largest d values in {51 (A\), -, Bm(A)}:

(24)

d
fo(A) = miaxz Bir (A). (25)
k=1

In another word, since the trace difference function f(\)
depends on the largest d eigenvalues, we first decompose
the function down to a set of eigenvalues and use their
Taylor expansion to approximate the function value f(\),
and renew A by solving the approximated problem. Solving
fp(A) = 0 is not difficult since it only involves n linear
functions. In practice, the time used to calculate fD()\) =0
can be neglected compared with the eigenvalue decomposition
procedure. Then, we renew A1 as the zero point of fp ().
By running such procedure iteratively, we can find the accurate
solution to the trace difference equation. We call the method
Decomposed Newton’s Method (DNM). An algorithmic pre-
sentation is provided in Table I.

One may easily find the relationship between our method
and the general Newton-Raphson method which is used to find
zero points for differentiable functions. In Newton-Raphson
method, the function is approximated by its first-order Taylor
expansion, and the solution is also sought iteratively. The
difference of the two and the superiority of our method is
presented in the next section.

Next, we prove the convergence of our method:

Theorem 2 (convergence). Denote the optimum trace ratio
value by \*, for any initial \; < \*, the renewed value \;11
satisfies (a) Ay1 > Ay, and (b) Ay <A™

Proof: The first term is straightforward. Because the
approximated eigenvalues Bk around )\; are all monotonic
decreasing functions (and recall our assumption, at least
m—d-+1 of them are strict monotonic decreasing since the null
space of \S; has dimensionality smaller than d), f p(A) is strict
monotonic decreasing. Using the facts fp(\) = f(A\s) > 0,
fD()\tH) =0 and Lemma 1, we have A\;y1 > Aq.

We focus on proving the second inequality. According to
the definition of fp(\), we have

d
fp(A) = max > B
k=1

d
= max ) [Bi(\) = (A= A)w, (A)Siwi, ()]
k=1

= maxTr[W7(i)(S, — ASYW ()], (26)
where W (i) = [wi, (M), ,w;, (A\)] is the matrix with
columns selected from eigenvectors of S(\;). Thus,

foN) < _max TrWT(S, - AS)W] = F(A).

(27
This implies that if A\;41 is the zero point of fp()\), then
f(Aty1) = 0. Because f(A*) = 0 and f(\) is monotonic
decreasing, we have ;11 < A\*. [ |

C. Singularity Case

The singularity case is an important issue in a large literature
of dimensionality reduction, such as [8] and [9], to name just
a few. Here we point out that our method does not require
S; to be full-ranked. Actually, if the null space of S; has
dimensionality smaller than d, whether .5; is singular or not is
not important, since the denominator 7r[W7 S;W] > 0 always
holds. Also, in this way, the null space of \S; and its orthogonal
complement space are simultaneously considered when finding
the global optimum solution the trace ratio problem, and the
singularity problem is inherently solved.

When the null space of S; has dimensionality d’ larger than
d (the dimensionality to be reduced to), the optimum trace ratio
value goes to infinity: note that any transform matrix W whose
column vectors belong to the null space of .S; will result in the
denominator Tr[W7S;W] to be zero. In this case, a natural
alternative solution is to maximize the numerator, i.e., to solve
max Tr[WTS,W] to find the appropriate transform matrix in
the null space of S;. One may easily find that this shares the
same thought of the null space LDA [8].

IV. DISCUSSION

In this section, we discuss the relationship between our
method and the previous methods described in Section II-B.

A. Generalized Foley—Sammon transform

One may immediately find that the Generalized Foley—
Sammon transform method proposed in [2] is equivalent to the
heuristic bisection method to find the zero point of a function.
Actually, as has been indicated in [1], this method generally
needs a large number of iterations before converging to some
satisfactory solution.
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Fig. I. A toy example of the trace difference function value f (A) and the
two approximation methods: fp(A) and fr(\). The black solid line is the
accurate trace difference function value. The blue dot-dashed line and the red
dashed line are respectively ITR and DNM approximations. It can be seen
that the DNM approximation value lies between the ITR approximation value
and the true function value. Similar results can be found for the solutions that
are marked in the figure, which supports Theorem 4.

B. Iterative Trace Ratio (ITR) algorithm

The ITR algorithm is empirically proved to be more efficient
in [1], but does not have a sound theoretical explanation.
Introducing perturbation analysis enables us to look into
the theoretical nature of the method. Actually, we have the
following theorem:

Theorem 3. The iterative trace ratio algorithm in [1] is
equivalent to the naive Newton-Raphson Method.

Proof: Define the optimum index vector i(*) that sorts
the n eigenvalues at \; from large to small, i.e., ﬁi(t)()\t) >
B (M) > > B (At). According to Lemma 2 and
Lemma 3, for iteration Z, the derivative of f(\) at point \; is
given by

d
FOo=> ﬁi;w'(xt) = —Tr[WLSW,]. (28)
k=1
The Newton-Raphson method then renews A;y; as
f)
A = -
t+1 t f, (/\t)
— + T’I"[WtT(Sp - )\tSl)Wt}
! Tr[WIS,W,]
T T
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which is exactly ITR’s renew criterion. ]

Similar with Theorem 2, the convergence of ITR can be
easily proved. And due to the Newton-Raphson method nature
of ITR, it is generally faster than the simple bisection method.
This is also mentioned empirically in [1] without a satisfactory
theoretical explanation, which we have proved here. Moreover,
we can theoretically compare the speed of DNM and ITR:

Theorem 4. For any initial \y < \*, the renewed value \i11
given by DNM is always no smaller than the one given by
ITR.

Proof: ITR can be viewed as finding the zero point of

the direct first-order Taylor expansion of f(\) as

d
fr) =3B (). (30)
k=1

This is also a monotonic decreasing function. To prove that
the renewed value A;; given by DNM is always no smaller
than the one given by ITR, we just need to prove that f 1(\) <
fp()). Actually, since fp(\) searches for the optimum value
over all index vectors ¢ instead of i(t), we have

d d

foN) =max "3, () 2> Bw(N) =fi(\).  GD
- k=1 "

Thus the result is straightforward. [ ]

This theorem guarantees the superiority of DNM over
the ITR algorithm. In another word, the difference between
ITR (i.e., the naive Newton-Raphson method) and our DNM
algorithm is that, ITR chooses the largest d eigenvalues at
A¢ and uses the sum of their first-order Taylor expansion
to approximate f. However, we notice that the largest d
eigenvalues at \; may not remain largest when A\ changes.
Thus, instead of fixing on the d eigenvalues, we dynamically
choose the largest d eigenvalues at A and use their sum to
approximate f. This approach assures that our approximation
is always larger than that of ITR. Also, since both ITR and
DNM gives a lower bound of the true f(X), our method
guarantees to converge faster. To illustrate the relationship
between f()), fp()) and f7()), a toy example is presented in
Figure 1. The experiment is performed on the UCI satimage
data set under LDA criterion with d = 10.

C. Maximum Margin Criterion

A similar thought of the trace difference function is shared
by Maximum Margin Criterion (MMC) [10]. In short, under
MMC one optimizes the following criterion to find an appro-
priate transform matrix W € R™*¢:

W = argmax Tr[W7T (S, — )W,
WTW=I

(32)

where WT(S, — S;)W is defined as the margin between
classes. However, one might raise the question: can we define
the margin using S, — AS; with A € R* taking values other
than 1? Actually, as the trace of the interclass covariance
matrix T'r[Sp] is usually much larger than the trace of the
intraclass covariance matrix 7S], it may be better to assign
a weight factor A for balance, and A should be larger than 1
intuitively. This is justified by the experimental result shown in
Figure 3. By introducing the trace difference function, we can
see that MMC may be seen as a special case of the trace ratio
framework when \ = 1, and that MMC can be considered as
an approximated solution to the trace ratio problem. Actually,
by taking A into account as a parameter to be optimized, our
method is expected to give a better result. This also builds up
a relationship between MMC and the classical dimensionality
reduction algorithms.
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Fig. 2. Accuracy versus reduced dimensionality on the ORL face database.
The line “Base” indicates the accuracy on the dimensionality after the
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Fig. 4. Relative error |\ — A*|/A* versus iteration number, which indicates
the convergence of the algorithms. The errors of GEVD is also shown in the
image as dashed lines for reference. Note that the final values around 10~ 1%
are due to numerical accuracy.

TABLE I
ERROR RATES (IN PERCENTAGE) ON THE DATABASES USING 10-FOLD
CROSS VALIDATION.

Error Rate ORL | UMist | USPS | MNIST | Coilyg
Trace Ratio | 96.25 | 98.62 88.45 87.73 98.96
Ratio Trace | 76.50 | 98.44 89.50 87.55 97.61

V. EXPERIMENTS

To further validate the theoretical result of the previous
sections, we carry out experiments on the ORL face database
and other object recognition applications that usually involves
a high dimensionality, and compare the results against other
related methods. For all experiments, we choose the LDA
criterion to generate the two matrices S, = Sy and S; = .

The ORL face database contains 400 images from 40
persons, with each image downsized and normalized to 56-
by-46 pixels by size for computation speed consideration.
In our experiment, we compare the trace ratio (TR) method
against four other criterions, namely PCA, ratio trace solution
to LDA via generalized eigenvalue decomposition (GEVD),
and MMC. For all the dimensionality reduction algorithms, the
images are treated as a vector, and a precedent PCA is used
to save 98% of the input data’s energy. After dimensionality
reduction, a simple k-nearest-neighbor classifier is used to
calculate the accuracy with neighbor number k = 5. We report
the accuracy value of a ten-fold cross validation in Figure 2.
The reduced dimensionality varies from 5 to 60. Note that
for GEVD, the reduced dimensionality is at most 39 due to
the rank of Sp, thus we stop at this dimensionality for it.
The average trace ratio value is shown in Figure 3. It can
be observed from the accuracy that the trace ratio method
performs competitively against all other methods, and can
get a better result than using the data without dimensionality
reduction. Especially, the superiority of trace ratio increases
with dimensionality. We adopted other experimental settings
such as randomly choosing a proportion of the data for training
and the remaining for testing. The results were similar to the
cross validation, thus we omit the details here. More extensive
experiments of trace ratio against other methods can be found
in the related works such as [1].

To compare the convergence speed of our method against
the two other trace ratio methods (bisection and ITR), we
report the convergence rate of the three methods when reduced
dimensionality d = 10. The mean value of the A* given by
the three methods after their convergence is considered as the
“true” trace ratio value \*, and for each iteration, the relative
error |\ — A*|/\* is used to monitor the convergence. The
result is shown in Figure 4. Further, we perform dimensionality
reduction on four other object recognition databases, namely
the UMist face database, the USPS digital database, the
MNIST digital database, and the COIL9 object database. The
convergence of the trace ratio algorithms are shown in Figure
5, using the relative error as the measure. It is not surprising
to see that our method converges faster in all the cases, since
it has been theoretically guaranteed. The error of the trace
ratio value for the GEVD solution (which corresponds to the
ratio trace criterion) is also provided, showing that GEVD
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Fig. 5. Convergence analysis over the UMist, USPS, MNIST, and COIL2o

databases.

does not give the optimum solution as we have analyzed in
the previous sections. We also provide the error rate using
ten-fold cross validation on the databases in Table II, where
the optimum dimensionality is searched from 1 to ¢ — 1.
According to the results and previous experiments such as
in [1], we infer that the trace ratio algorithm is most effective
when the number of data is small while the dimensionality is
large, such as the face databases. When the dimensionality is
not very high and there are a large number of data (such as
handwritten digit number data sets), the trace ratio algorithm
gives comparatively marginal improvement.

VI. CONCLUSION

Dimensionality reduction is a fundamental problem in many
machine learning fields and related applications. In this paper,
we focused on solving the trace ratio problem that can be used
to model many dimensionality reduction algorithms. The main
contribution of our paper lies in two aspects: first, we have
explored the theoretical nature of the trace ratio problem, the
trace difference problem and their relationship by introducing
the eigenvalue perturbation theory, and have also given the
theoretical explanation of the previous trace ratio algorithms.
Second, we have proposed a new way to efficiently find the
global optimum of the trace ratio problem, whose foundation
and superiority is guaranteed by the theoretical analysis.
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