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Abstract

In this paper, we propose a novel graph based cluster-

ing approach with satisfactory clustering performance and

low computational cost. It consists of two main steps: tree

fitting and partitioning. We first introduce a probabilistic

method to fit a tree to a data graph under the sense of min-

imum entropy. Then, we propose a novel tree partitioning

method under a normalized cut criterion, called Normalized

Tree Partitioning (NTP), in which a fast combinatorial al-

gorithm is designed for exact bipartitioning. Moreover, we

extend it to k-way tree partitioning by proposing an efficient

best-first recursive bipartitioning scheme. Compared with

spectral clustering, NTP produces the exact global opti-

mal bipartition, introduces fewer approximations for k-way

partitioning and can intrinsically produce superior perfor-

mance. Compared with bottom-up aggregation methods,

NTP adopts a global criterion and hence performs better.

Last, experimental results on image segmentation demon-

strate that our approach is more powerful compared with

existing graph-based approaches.

1. Introduction

Perceptual grouping is always a fundamental but chal-

lenging problem in pattern recognition and computer vision.

Many real-world applications can benefit from satisfactory

grouping. For example, in pattern recognition and multi-

media analysis, image categorization and annotation usu-

ally adopt image segmentation results to extract features for

matching. In managing/summarizing image search results

from image search engines, grouping visually similar im-

ages has been known as an effective way. Computational

efficiency and result reliability are two important factors for

evaluating clustering methods. In this paper, we propose a

novel clustering method, called Normalized Tree Partition-

ing (NTP), to improve clustering efficiency and reliability,

and demonstrate its powerfulness on image segmentation.

There is a large literature on clustering, dating back over

30 years [8]. Generally, clustering methods can be di-

vided into three categories: (1) clustering based on prob-

ability density, such as K-means, Gaussian mixture models

and mean shift [4]; (2) clustering based on pairwise graph

models, including spectral clustering [11], affinity propaga-

tion [7], incremental aggregation [5] and so on; (3) cluster-

ing using multiple-wise relationship, such as [1, 17]. The

first category views each data point generated from one la-

tent probability distribution and clusters data points to a lo-

cal mode or component, but takes no consideration of spa-

tial or local consistency and suffers from heavy computation

load when dealing with large scale data. The second cat-

egory usually constructs a weighted graph with the nodes

representing the data points, the edges connecting pairs of

points and the weights on the edges reflecting the simi-

larities between the corresponding points, and then parti-

tions the graph to finally cluster the data points. The last

one models multiple-wise relations among data points, but

brings expensive computational cost, making it impractical.

Here we briefly review the second category that is very rel-

evant to the proposed approach.

There are basically two types of pairwise graph based

methods. The first aims to define a global criterion and de-

sign a top-down optimization algorithm, expecting to obtain

a reliable clustering result. The normalized cuts (Ncuts) cri-

terion, first proposed in [11], is thought as an ideal one. It

aims to minimize the summation of the weights of the edges

that are being split and meanwhile maximize the summation

of the weights on each cluster. This criterion results in an

NP hard problem if there exist cycles in the graph, and re-

laxation techniques are introduced to approximately solve

it. One popular method, based on the spectral relaxation

technique, is spectral clustering proposed in [11, 14]. Spec-

tral clustering suffers from heavy computational load, and

the results may be unsatisfactory due to unpredictable ap-

proximation though it adopts a good criterion.

The other type adopts a simple local criterion and per-

forms a bottom-up strategy to heuristically aggregate the

data points into more and more compact clusters. One of

the representative methods is presented in [5]. This method

incrementally unions two small clusters (initially a cluster
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only consists of a single data point) into one cluster, based

on the weights of the edges connecting the two clusters.

This method is computationally efficient, but may not get

satisfactory segmentation results due to the simple union

criterion, which only considers the weights of the edges

connecting two clusters. Graph theoretic methods proposed

in [13, 15] find a minimum spanning tree from the data

graph and cut the edges corresponding to minimum weights.

It also suffers from the local criterion and results in unsatis-

factory performance.

1.1. Our approach

An ideal clustering method usually has two characteris-

tics: satisfactory clustering performance and computational

efficiency, which require a good criterion to measure the

clustering result and an effective and efficient solution to

this criterion. Few existing approaches meet such two re-

quirements. Bottom-up aggregation methods, such as [5], is

computationally efficient while its criterion only considers

local similarities, i.e., minimizing inter-similarities between

clusters, hence has no ability to evaluate the self-similarity

in a single cluster. Ncuts is a criterion to measure both inter-

similarities and self-similarities, but existing solutions ap-

proximately optimize it using numerical algorithms such as

spectral clustering [11], which brings unpredictable approx-

imations and leads to unsatisfactory results.

In this paper, we propose a novel clustering approach to

optimize the Ncuts criterion, to reduce computational cost

and boost clustering satisfaction. To solve the difficulty in

optimizing the Ncuts criterion on a cyclic graph, we per-

form a tree fitting step by breaking the cycles, and then par-

tition this tree under the Ncuts criterion. The two steps are

specified as follows:

1. Construct a tree to probabilistically approximate a data

graph under the minimum entropy criterion, presented

in Sec. 2.

2. Perform the proposed normalized tree partitioning

method, which provides an effective solution to Ncuts

on a tree to obtain the clustering, detailed in Sec. 3.

The main contributions are summarized in the following

several perspectives:

1. An effective way is introduced to probabilistically ap-

proximate the data graph using a tree under the mini-

mum entropy criterion.

2. An efficient algorithm is proposed to optimize Ncuts

on a tree, called Normalized Tree Partitioning. More-

over, theoretic analysis is given to prove that the pro-

posed algorithm is guaranteed to get an exact global

optimum for normalized tree bipartitioning.

(a) Data graph (b) Candidate tree

u

v

r

(c) Tree structure

Figure 1. (b) shows a candidate tree made up of directed edges to

approximate the graph in (a). In (c), red edge (u, v) is a candidate

edge to be split.

3. A best-first recursive biparitioning scheme is proposed

for k-way partitioning. The whole clustering algorithm

is computationally efficient.

The remainder is organized as follows. Sec. 2 gives a

probabilistic method to fit a tree to a data graph under the

sense of minimum entropy. Then, Sec. 3 introduces the

normalized tree partitioning method. Next, Sec. 4 presents

comparison analysis with related methods. Experimental

results in Sec. 5 demonstrate the effectiveness and effi-

ciency of our approach. Finally, Sec. 6 concludes this paper.

2. Probabilistic tree fitting

Given a set of n data points X = {xi}
n
i=1, we represent

the data points in the form of a graph G = (V, E), where

V is a set of n nodes {i}n
i=1 with node i corresponding to

xi, and E is a set of edges connecting the data points. La-

bels L = {li}
n
i=1 represent the cluster assignment of the

data points. Suppose a distribution P (L) corresponds to a

graph G, we aim to find a tree distribution T (L) to fit P (L).
Here, T (L) =

∏

v∈V Tv|pa(v)(lv|lpa(v)) corresponds to a

tree structure T = {(v, pa(v))}v , where pa(v) is the parent

node of v, and Tv|pa(v)(lv|lpa(v)) is a conditional probabil-

ity. For example, we want to find a tree T in Fig. 1(b) to

approximate the graph in Fig. 1(a).

2.1. Background

We follow the idea in [3] to find a tree T in the sense of

maximum likelihood, which is equivalent to minimizing the

Kullback-Leibler divergence between P and T .

The tree fitting process consists of searching both the

best tree structure T and parameters {Tv|pa(v)}v . With the

deduction in [3], the tree structure T can be found by max-

imizing the summation of the mutual information:

J(T ) =
∑

(u,v)∈T
Iuv, (1)

where the mutual information Iuv is defined as

Iuv =

∫

Puv(lu, lv) log
Puv(lu, lv)

Pu(lu)Pv(lv)
dlu dlv.

The best tree parameters Tv|pa(v) are obtained by copy-

ing the conditional distributions Pv|pa(v) from P (L), i.e.,

Tv|pa(v)(lv|lpa(v)) = Pv|pa(v)(lv|lpa(v)), ∀v ∈ V .



In [3], the probability P (l) is given by a set of discrete-

valued examples, hence mutual information Iuv can be ap-

proximated in a nonparametric way. However, in general

cases, such as P (L) given in a parametric function, Iuv is

not easily computed. In the following subsection, we in-

troduce an approximation method to compute the mutual

information for the graph constructed on the data points X .

2.2. Tree fitting for data graph

We use a first-order Markov random field to describe the

data graph: P (L) = 1
Z

∏

(u,v)∈E P (lu, lv), where Z is the

normalization constant, lu is the label of xu. P (lu, lv) ∝
P (δ[lu=lv ]) is used to measure the probability that xu and

xv belong to the same cluster, and it is defined as a Potts

model:

P (δ[lu=lv ]) =
1

Z

{

1 δ[lu=lv ] = 1
1 − exp(−λg(xu,xv)) δ[lu=lv ] = 0,

where g(xu,xv) is a distance measure between data points

xu and xv , Z is the normalization parameter, λ is set to 1

by default, and δ[lu=lv ] is an indicator function.
As mentioned before, the difficulty of tree fitting is com-

puting mutual information Iuv because it requires that the
marginal and joint probabilities, Pu, Pv and Puv , are pre-
computed, while estimating those probabilities is NP-hard
in a cyclic graph. Therefore, we approximate Puv using lo-
cal prior P (lu, lv). Without any bias considered, P (lu) can
be simply approximated as a uniform distribution. Then the
mutual information is approximated as

Iuv ≈
∑

lu,lv
P (lu, lv) log

P (lu, lv)

(1/M)(1/M)

=
∑

lu,lv

P (lu, lv) log P (lu, lv) + 2 log M
∑

lu,lv

P (lu, lv)

≈
∑

δ[lu=lv ]

P (δ[lu=lv ]) log P (δ[lu=lv ])

+2 log M
∑

lu,lv
P (lu, lv)

= −Huv + 2 log M. (2)

Here log M is constant for any edge (u, v) with M the num-

ber of clusters, hence it can be omitted. We call the span-

ning tree as the minimum entropy spanning tree since the

objective is equivalent to minimizing the summation of en-

tropies Huv .

The tree fitting procedure is summarized as follows:

Algorithm 1 Minimum entropy tree spanning

1. Compute entropy Huv for all edges(u, v).

2. Construct a minimum entropy spanning tree T such that
∑

(u,v) Huv is minimized by some maximum weight span-

ning tree algorithms, such as Prim’s or Kruskal’s algorithms.

3. Assign tree parameters Tv|pa(v) as Pv|pa(v).

3. Normalized tree partitioning

Given a tree T = (V, E ′), the bipartition is defined as

separating the nodes V into two disjoint sets, A and B,

A∪B = V , A∩B = ∅, by simply removing edges connect-

ing the two sets. The proposed normalized tree partitioning

aims to minimize the Ncuts criterion:

Ncuts =
cut(A, B)

assoc(A) + cut(A,B)
+

cut(B,A)

assoc(B) + cut(B,A)
,

where assoc(A) =
∑

u,v∈A a(u, v) is the association

to measure the self-similarity of a cluster, cut(A,B) =
∑

u∈A,v∈B a(u, v) is the cut to measure the inter-similarity

between clusters, and a(u, v) is the similarity between data

points u and v.

3.1. Computing the optimal bipartition

We present the optimal solution to separate a tree into

two partitions under the normalized cuts criterion. We first

give a theorem to show that only one edge is required to be

removed to obtain the global optimum for the normalized

cut criterion, and then present the proposed algorithm.

Theorem 1. On a tree, the global optimum for the normal-

ized cut criterion must correspond to two subtrees: A and

B, which are connected respectively.

Proof. We prove this theorem by contradiction. Suppose there exists an

optimum where m (> 1) edges, {(ui, vi)}
m
i=1, ui ∈ A, vi ∈ B, are

removed, and this leads to m + 1 connected subtrees {Vj}
m
j=0. Then the

normalized cut can be written as

NC =

∑

i a(ui, vi)

aA +
∑

i a(ui, vi)
+

∑

i a(ui, vi)

aB +
∑

i a(ui, vi)

=
aT

∑

i a(ui, vi)

(aA +
∑

i a(ui, vi))(aB +
∑

i a(ui, vi))
, (3)

where aT ≡ aA +
∑

i a(ui, vi) + aB +
∑

i a(ui, vi) ≡ assoc(A ∪
B,A ∪ B) ≡ assoc(V,V) by definition. Consider the m possible par-

titions, {(Ai,Bi)}
m
i=1, corresponding to splitting one single edge from

{(ui, vi)}
m
i=1. The normalized cut of (Ai,Bi) is written as

NC i =
a(ui, vi)

aA
i
+ a(ui, vi)

+
a(ui, vi)

aB
i
+ a(ui, vi)

=
aT a(ui, vi)

(aA
i
+ a(ui, vi))(aB

i
+ a(ui, vi))

. (4)

Denote NC i = NC
i

aT

. The following inequality holds

min({NC i}
m
i=1) (5)

≤

∑

i a(ui, vi)
∑

i(aA
i
+ a(ui, vi))(aB

i
+ a(ui, vi))

(6)

<

∑

i a(ui, vi)

(aA +
∑

i a(ui, vi))(aB +
∑

i a(ui, vi))
. (7)

The inequality from Eqn. (5) to Eqn. (6) can easily be validated. The in-

equality from Eqn. (6) to Eqn. (7) holds when
∑

i(aA
i
+a(ui, vi))(aB

i
+

a(ui, vi)) > (aA +
∑

i a(ui, vi))(aB +
∑

i a(ui, vi)), which is in de-

tail proved in Appendix. This means that at least one partition (Ai,Bi)
has smaller normalized cut value than (A,B), and this is in contradiction

with the assumption. Consequently, the theorem holds.



The above theorem reflects a straightforward fact that

only one edge needs to be removed to optimize the normal-

ized cut criterion on a tree. Considering the tree in Fig. 1(c),

which is rooted from node r and denoted as Tr, we can

just remove edge (u, v), then the tree is partitioned into two

parts: one, denoted as Tv , is rooted from node v, and the

other one, denoted as Tr\v and called complementary sub-

tree, is still rooted from the original root r but excludes Tv

and edge (u, v). For convenience, the removed edge (u, v)
is used to represent such a bipartition.

The (connected) tree structure only consists of n − 1
edges, where n is the number of the nodes. So it only

takes O(n) time to find the optimal edge to be split by just

traversing all the edges, if all combinations of associations

and cuts are pre-computed. Because there is only one edge

linking two complementary subtrees, the cut value can be

directly obtained. In Fig. 1(c), the cut value of the partition,

cut(Tr\v, Tv), is the similarity a(u, v) of nodes u and v.

The difficulty lies in how to efficiently compute the as-

sociation. A naive method is just exhaustively calculating

all kinds of combinations. This will result in computational

inefficiency and its time complexity is O(n2) because there

are O(n) possible bipartitions and it takes O(n) time to cal-

culate the association for each bipartition.

To speed up association calculation, we propose a re-

cursive method by exhibiting the properties of association

complementarity and overlapping subproblems in evaluat-

ing the association. More specifically, our approach is

based on the following two properties. The first is associ-

ation complementarity. From Fig. 1(c), it is obvious that

ar\v = ar − av − 2a(u, v), where ar\v = aTr\v and

ar = aTr
. Hence, it is sufficient to calculate association

values for all subtrees Tv . The second property is over-

lapping of association evaluation between a subtree and its

child trees. According to the definition of association, it can

be easily derived that the association of subtree Tv is equal

to the summation of the associations of the subtrees, rooted

from v’s child nodes, and double cut values between v and

v’s child nodes. Mathematically, this overlapping can be

written as a recursive formulation:

av =

{ ∑

w∈Cv

(aw + 2a(v, w)) v an internal node

0 v a leaf node,
(8)

where Cv represents the set of v’s child nodes. By this re-

cursion, the associations of all the subtrees can be evaluated

in a bottom-up manner from the leaves to the root. In sum-

mary, the bisection of a tree consists of two steps:

Algorithm 2 Normalized tree bipartitioning

1. Calculate recursively association av for each ubtree Tv ac-

cording to Eqn. (8), and association ar/v of subtree Tr/v .

2. Traverse all the edges to find the optimal bipartition.

3.2. K-way partitioning

When the partition number k is larger than 2 in k-way

partitioning, it is difficult to optimize the Ncuts criterion on

a tree. Although the generalization of Theorem. 1 for k-way

partitioning still holds, its solution is not easy. A naive algo-

rithm may check all kinds of combinations independently in

a brute force manner, which will lead to O(nk) time com-

plexity. To our knowledge, there does not exist an exact k-

way partitioning algorithm similar to the above bipartition-

ing algorithm. Therefore, we propose a best-first recursive

bipartitioning algorithm to approximately optimize k-way

partitioning. The recursive procedure is as follows:

Algorithm 3 K-way normalized tree partitioning

1. Bisect the input tree T into A1 and A2. Set the number of

current partitions p = 2.

2. Try to bisect all the current subtrees {Ai}
p
i=1.

3. Find the subtree At that produces the smallest normalized cut

value, denote its bisected subtrees B1 and B2, and let At =
B1 and Ap+1 = B2, increase p by 1.

4. Output the k-way partitions if p = k, otherwise go to step 2.

4. Analysis and comparison

4.1. Time complexity

The proposed clustering method consists of a tree fitting

step and a tree partitioning step. In tree fitting, we first

build a neighbor graph for all the data points, which can be

implemented in O(n log n) time using approximate near-

est neighbor algorithms such as [2]. The minimum entropy

spanning tree can be obtained using Prim’s or Kruskal’s al-

gorithms, which takes O(n log n) time in our sparse graph

case. In normalized tree partitioning, we evaluate the as-

sociation, using a recursive way costing O(n) time in that

each node is only involved once to calculate the associa-

tion of its parent tree, and the optimal bipartition is found

in O(n) time. For k-way partitioning, the total time com-

plexity is O(kn). In summary, the time complexity of the

clustering method is O(n(k + log n)). The comparison of

time complexity with representative existing graph based

methods is presented in Tab. 1.

4.2. Comparison

The overall comparison with other clustering methods is

summarized in Tab. 1. In the following, we give the de-

tailed comparison with the most related two methods: spec-

tral clustering and minimum tree partitioning.

Vs. spectral clustering Spectral methods to optimize Ncuts

usually consist of two steps: relaxation and discretization. It

first relaxes the discrete optimization problem to a contin-

uous problem solved as an eigen-decomposition problem,



NTP SC GBIS MTP AP

Criterion Ncuts Ncuts Local Mincuts Exemplar

Complexity O(n(k + log n)) O(n2) O(n log n) O(n(k + log n)) O(Tn2)

Table 1. Comparison of the criterion and time complexity with other methods. The abbreviations have the following meanings: NTP =

normalized tree partitioning, SC = spectral clustering, GBIS = the clustering method for graph based image segmentation in [5], MTP =

minimum tree partitioning in [15], AP = affinity propagation in [7]. The criteria are of the following meanings: Ncuts = normalized cuts,

Mincuts = minimum cuts, Local = local similarity, Exemplar = exemplar identification. Note: The time complexity of SC is for the basic

implementation in the case of sparse graph.

(a) Original image (b) NTP (c) MTP

Figure 2. A comparison of segmentation results. (a) shows the

original image, (b) shows the result of normalized tree partition-

ing, which is satisfactory, (c) shows the result of the tree based

approach in [15]. Note: NTP = our approach, and MTP = tree

approach in [15].

(a) (b) (c) (d)

Figure 3. Illustration of normalized tree partitioning on 2D toy ex-

amples. The top row shows the fitted trees, and the bottom shows

the corresponding clustering results with different colors repre-

senting different clusters.

and then discretizes the continuous solution into the dis-

crete solution. The latent approximation in the two steps

is not easily predicted. Our approach solves the optimiza-

tion completely in the discrete space, and the approximation

is mostly introduced in tree fitting. This difference implies

that normalized tree partitioning has the potential to get su-

perior performances over spectral clustering. Comparison

results in Figs. 6 and 7 also demonstrate this superiority.

Vs. minimum tree partitioning Compared with the ap-

proach based on minimum cuts in [13, 15], we optimize

the normalized cut criterion, which was shown to be bet-

ter as it considers the self-similarity of a cluster. We im-

plemented the algorithms in [13, 15], and the segmenta-

tion usually results in cutting small regions. In the example

shown Fig. 2(c), the small nose is cut out with the approach

in [15].

5. Experimental results

We demonstrate our method on toy examples and image

segmentation on the Berkeley image dataset.

(a)
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Figure 4. (a) Sample face images. (b) Comparison with spectral

clustering (SC) and affinity propagation (AP). It can be seen that

the performance of NTP is better than SC and AP.

5.1. Toy example

First, we illustrate the NTP clustering performance on

2D toy examples, shown in Fig. 3. We show the results of

two simple examples shown in (a) and (b) and two difficult

examples shown in (c) and (d), which are used in [16] 1. We

construct a data graph by connecting 4 nearest neighbors.

The top row in Fig. 3 shows the fitted tree, and the bottom

row shows the clustering results of our approach. This ex-

ample shows that our approach has the ability to cluster the

complex data points as shown in Fig. 3 (c) and (d).

Next, we do a clustering experiment on another toy

dataset2. The dataset contains 900 face images generated

from the first 100 face images in the Olivetti database with

simple editing. We build a sparse graph on the images by

connecting each image and its 50 nearest neighbors. We

vary the clustering number between 100 and 300, and com-

pute the error rate against the ground truth (all the images,

which are generated from the same original image, are con-

sidered to have the same label). The comparison results

with spectral clustering and affinity propagation [7] are pre-

sented in Fig. 4. It can be seen that NTP performs better

than other two methods. It is also worth pointing out that

the error rate of NTP is monotonically decreasing, while

that of spectral clustering may oscillate, due to the instabil-

ity of its discretization.

5.2. Application to image segmentation

We demonstrate our approach on image segmentation.

All the images are firstly smoothed to make our approaches

1
http://www.vision.caltech.edu/lihi/Demos/SelfTuningClustering.html

2
http://www.psi.toronto.edu/affinitypropagation/Faces.JPG



more robust to noises. The results based on tree partition-

ing are all obtained by segmenting the superpixels, which

are generated by fragmenting the image. The graph is con-

structed by setting the superpixels as the nodes and connect-

ing two superpixels iff they are spatial neighbors. The dis-

tance between neighboring superpixels is evaluated using a

method similar to [5]. In our experiments, the ranges for

RGB value in color images are all normalized to [0, 1]. All

the running times are given on 1.9 GHz Pentium 4 desktop

PC.

5.2.1 Illustration of k-way segmentation

We present recursive segmentation results to illustrate k-

way segmentation shown in Fig. 5. The superpixels are

shown in (b), the graph on the superpixels is shown in

(c). The minimum entropy spanning tree approximating this

graph is shown in (d). Next, the optimum bisegmentation by

our method is shown (e), Last, The 3-way and 4-way parti-

tions using the recursive scheme are shown in (f) and (g).

5.2.2 Segmentation on the Berkeley image dataset

We present visual and quantitative comparisons of im-

age segmentation on the Berkeley image segmentation

dataset [9]. The dataset contains 200 training images and

100 testing images with size of 480 × 320 or 320 × 480.

Here we do unsupervised segmentation, and hence perform

segmentation on both training and testing images.

By comparison, we present segmentation results of other

two popular graph partitioning methods, multi-class spec-

tral clustering (SC) based on the Ncuts criterion in [14] and

heuristic graph based image segmentation (GBIS) [5]. We

run the matlab implementation of spectral clustering 3, and

c++ implementation of graph based image segmentation 4.

The segmentation numbers of NTP and spectral clustering

are set to be the same. For GBIS, we tune the parame-

ters so that it has similar segmentation numbers on aver-

age. Some visual comparisons of segmentation results are

shown in Figs. 6 and 7. It can be seen that our results are

more satisfactory.

We also present quantitative comparison, and four cri-

teria against the human annotations are used for evaluation:

probabilistic rand index (PRI) [12], variation of information

(VoI) [10], global consistency error (GCE) [9], and bound-

ary displacement error (BDE) [6]. PRI score counts the

number of pairs of pixels whose labels are consistent be-

tween the segmentation and the ground truth. The score is

averaged over multiple ground truth segmentations to take

scale variation into consideration in human perception. VoI

score defines the distance between two segmentations as the

3 http://www.cis.upenn.edu/˜jshi/software/
4 http://people.cs.uchicago.edu/˜pff/segment/

Method PRI VoI GCE BDE RT

NTP 0.7521 2.4954 0.2373 16.30 0.326

SC 0.7357 2.6336 0.2469 15.40 4.25

GBIS 0.7139 3.3949 0.1746 16.67 0.578

Table 2. Quantitative comparison over the Berkeley dataset be-

tween normalized tree partitioning (NTP), spectral clustering (SC)

and graph-based image segmentation (GBIS). The best score is

emphasized in bold fonts.

average conditional entropy of one segmentation given the

other, and thus roughly measures the amount of randomness

in one segmentation that cannot be explained by the other.

GCE score measures the extent to which one segmentation

can be viewed as a refinement of the other. Segmentations

which are related in this manner are considered to be con-

sistent, because they could represent the same natural image

segmented at different scales. BDE score measures the av-

erage displacement error of boundary pixels between two

segmented images. The segmentation is viewed better if

PRI is larger or the other three are smaller.

We report the average scores over the images in Tab. 2.

It can be seen that our method performs better than spec-

tral clustering in terms of three criteria: PRI, VoI, and GCE,

and better than GBIS in terms of three criteria: PRI, VoI,

and BDE. The superiority of NTP over SC is because our

method can obtain a better solution by introducing the tree

structure, while spectral clustering suffers from the two ap-

proximation steps, as discussed in Subsec. 4.2. The supe-

riority of NTP over GBIS comes from the Ncuts criterion

considering both inter-similarities and self-similarities of

clusters, while GBIS only utilizes the local similarity cri-

terion and has no ability to measure the self-similarity of a

cluster. In addition, we also present the running time of all

the three methods in the last column of Tab. 2. We can see

that the running time (RT) of our approach is much less than

GBIS and SC. It should be noted that the running time for

our approach is recorded for the whole segmentation pro-

cess including both preprocessing, graph construction, tree

fitting and normalized tree partitioning. Experience shows

that PRI and VoI seem to be more correlated with human

segmentation in term of visual perception. Therefore, in

summary, our approach is more powerful than GBIS and

SC in the two perspectives of both segmentation satisfac-

tion and running time.

6. Conclusion

In this paper, we proposed a novel cluster method to im-

prove clustering satisfaction and reduce computational cost.

It consists of two steps: tree fitting and normalized tree par-

titioning. The main contributions include: 1) We construct

a tree to approximate a graph under the sense of minimum

entropy; 2) We propose an effective method to optimize the
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Figure 5. Illustration of recursive bipartitioning.
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Figure 6. Visual comparisons of image segmentation on the Berkeley dataset. (a) is the original image, (b) is the segmentation of NTP, and

(c) and (d) are the segmentation of spectral clustering and graph based image segmentation. It can be seen our results are visually better.

Ncuts criterion on a tree, in which it is theoretically guaran-

teed to find the exact global optimum solution for biparti-

tioning; 3) We extend it to k-way partitioning in a recursive

bipartitioning scheme. The experiments on image segmen-

tation demonstrate the effectiveness and efficiency of our

approach.

Acknowledgments

Yangqing Jia and Changshui Zhang are supported by
NSFC (Grant No. 60675009). Long Quan is supported by
Hong Kong RGC project 619006.

References

[1] S. Agarwal, J. Lim, L. Zelnik-Manor, P. Perona, D. J. Kriegman, and

S. Belongie. Beyond Pairwise Clustering. In CVPR (2), pages 838–

845, 2005. 1

[2] S. Arya, D. M. Mount, N. S. Netanyahu, R. Silverman, and A. Y. Wu.

An Optimal Algorithm for Approximate Nearest Neighbor Searching

Fixed Dimensions. J. ACM, 45(6):891–923, 1998. 4

[3] C. K. Chow and C. N. Liu. Approximating Discrete Probability Dis-

tributions with Dependence Trees. IEEE Trans. Information Theory,

14(3):462–467, May 1968. 2, 3

[4] D. Comaniciu and P. Meer. Mean Shift: A Robust Approach Toward

Feature Space Analysis. IEEE Trans. Pattern Anal. Mach. Intell.,

24(5):603–619, 2002. 1

[5] P. F. Felzenszwalb and D. P. Huttenlocher. Efficient Graph-Based

Image Segmentation. Int. J. Comput. Vision, 59(2):167–181, 2004.

1, 2, 5, 6
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Appendix

Lemma.
∑m

i=1
(aA

i
+ a(ui, vi))(aB

i
+ a(ui, vi))

> (aA +
∑m

i=1
a(ui, vi))(aB +

∑m

i=1
a(ui, vi)) (9)

Proof. Interestingly, subtrees {Vj}
m
j=0 and edges {(ui, vi)}

m
i=1 can be

viewed as a super tree T with subtrees as super nodes connected by edges

{(ui, vi)}
m
i=1.

Then the following two statements holds: (1) A and B correspond to

the subsets of super nodes with odd depths (blue nodes in Fig. 8) and even

depths (red nodes in Fig. 8), respectively; (2) (Ai,Bi) can be viewed as

Figure 8. The super tree ({Vj}
m
j=0, {(ui, vi)}

m
i=1).

a partition of the super tree T by removing edge (ui, vi). With those two

observations, the following inequality can be easily validated

aAaB = (
∑

Vo∈A

aVo
)(

∑

Ve∈B

aVe
) <

m
∑

i=1

(
∑

V
j
∈A

i

aV
j

∑

V
j
∈B

i

aV
j
).

Transferring and expanding the left hand side of Eqn. (9), we can have:
∑m

i=1
(aA

i
+ a(ui, vi))(aB

i
+ a(ui, vi))

=
∑m

i=1
[

∑

V
j
∈A

i

aV
j

+ 2
∑

(u
j
,v

j
)∈A

i

a(uj , vj) + a(ui, vi)]

[
∑

V
j
∈B

i

aV
j

+ 2
∑

(u
j
,v

j
)∈B

i

a(uj , vj) + a(ui, vi)]

>

∑m

i=1
[
∑

V
j
∈A

i

aV
j

∑

V
j
∈B

i

aV
j

+(
∑

V
j
∈A

i

aV
j

+
∑

V
j
∈B

i

aV
j
)a(ui, ui)

+(2
∑

(u
j
,v

j
)∈A

i

a(uj , vj) + a(ui, vi))

×(2
∑

(u
j
,v

j
)∈B

i

a(uj , vj) + a(ui, vi))]

> aAaB +
∑m

j=0
aV

j

∑m

i=1
a(ui, ui)

+
∑m

i=1
[a2(ui, vi) + a(ui, vi)

∑

j 6=i
a(uj , vj)]

= aAaB + (aA + aB)
∑m

i=1
a(ui, vi) + [

∑m

i=1
a(ui, vi)]

2

= (aA +
∑m

i=1
a(ui, vi))(aB +

∑m

i=1
a(ui, vi)).

Therefore, the lemma holds.


