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Abstract

In this paper we examine the effect of receptive field de-
signs on classification accuracy in the commonly adopted
pipeline of image classification. While existing algorithms
usually use manually defined spatial regions for pooling, we
show that learning more adaptive receptive fields increases
performance even with a significantly smaller codebook size
at the coding layer. To learn the optimal pooling param-
eters, we adopt the idea of over-completeness by starting
with a large number of receptive field candidates, and train
a classifier with structured sparsity to only use a sparse sub-
set of all the features. An efficient algorithm based on incre-
mental feature selection and retraining is proposed for fast
learning. With this method, we achieve the best published
performance on the CIFAR-10 dataset, using a much lower
dimensional feature space than previous methods.

1. Introduction
State-of-the-art category-level image classification algo-

rithms usually adopt a local patch based, multiple-layer
pipeline to find good image features. Many methods start
from local image patches using either normalized raw pixel
values or hand-crafted descriptors such as SIFT [22] or
HOG [10], and encode them into an overcomplete rep-
resentation using various algorithms such as K-means or
sparse coding. After coding, global image representations
are formed by spatially pooling the coded local descriptors
[33, 2, 4]. Such global representations are then fed into non-
linear classifiers [21] or linear classifiers [33], with the latter
being more popular recently due to their computation effi-
ciency. Methods following such a pipeline have achieved
competitive performance on several challenging classifica-
tion tasks, such as Caltech-101 and Pascal VOC [11].

During the last decade, much emphasis has been directed
at the coding step. Dictionary learning algorithms have
been discussed to find a set of basis that reconstructs lo-
cal image patches or descriptors well [23, 9], and several
encoding methods have been proposed to map the origi-
nal data to a high-dimensional space that emphasizes cer-

tain properties, such as sparsity [24, 33, 34] or locality [31].
Recent papers [6, 28, 9] have explored the relationship be-
tween dictionary learning and encoding, and have proposed
simple yet effective approaches that achieve competitive re-
sults. The neuroscience justification of coding comes from
simple neurons in the human visual cortex V1, which have
been believed to produce sparse and overcomplete activa-
tions [24].

Similarly, the idea of spatial pooling dates back to
Hubel’s seminal paper about complex cells in the mam-
malian visual cortex [13], which identifies mid-level image
features that are invariant to small spatial shifting. The spa-
tial invariance property also reflects the concept of locally
orderless images [17], which suggests that low-level fea-
tures are grouped spatially to provide information about the
overall semantics. Most recent research on spatial pooling
aims to find a good pooling operator, which could be seen as
a function that produces informative statistics based on lo-
cal features in a specific spatial area. For example, average
and max pooling strategies have been found in various al-
gorithms respectively, and systematic comparisons between
such pooling strategies have been presented and discussed
in [2, 4]. Recently, Coates et al. proposed to pool over mul-
tiple features in the context of deep learning [7].

However, relatively little effort has been put into better
designs or learning of better spatial regions for pooling, al-
though it has been discussed in the context of learning local
descriptors [32]. A predominant approach to define the spa-
tial regions for pooling, which we will also call the recep-
tive fields (borrowing the terminology from neuroscience)
for the pooled features, comes from the idea of spatial pyra-
mids [21, 33], where regular grids of increasing granularity
are used to pool local features. The spatial pyramids provide
a reasonable cover over the image space with scale infor-
mation, and most existing classification methods either use
them directly, or use slightly modified/simplified versions.

In this paper, we ask the question “are spatial pyramids
optimal for image classification?”, the answer to which is
often neglected by existing algorithms. While a pyramid
of regions succeeds in providing us information about the
spatial layout of image features, one can reasonably ques-
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Figure 1. The image classification pipeline. See Section 2 for details.

tion their optimality, as the grid structure may not be adap-
tive enough to fit the spatial statistics of natural images. As
a simple example, to distinguish most indoor and outdoor
scenes, a human may look for the existence of the horizon,
which could be captured by thin horizontal pooling regions
over the image. Spatial grids, even with a pyramid structure,
fail to provide such information.

Instead of arbitrarily defining heuristic receptive fields,
we aim to explicitly learn the receptive fields for classifi-
cation tasks. Specifically, we propose to adaptively learn
such regions by considering the receptive fields additional
parameters, and jointly learning these parameters with the
subsequent classifiers. The resulting benefit is two-fold:
receptive fields tailored to classification tasks increase the
overall accuracy of classification; in addition, with the help
of such mid-level features, we are able to use a much lower-
dimensional feature to achieve the state-of-the-art perfor-
mance. We experiment with our algorithm on the bench-
mark CIFAR-10 dataset and other datasets, and report a sig-
nificant improvement in both accuracy and efficiency.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a background review of the image classifica-
tion pipeline, and Section 3 proposes the adaptive receptive
field learning idea, as well as an efficient algorithm to carry
out learning. Experiments are presented in Section 4, and
we conclude the paper in Section 5.

2. The Classification Pipeline

In this section, we briefly review the image classification
pipeline we adopted, which leads to the problem of learning
the receptive fields for spatial pooling. Specifically, we will
focus on two-layer classification approaches.

We illustrate the pipeline from raw images to the predic-
tion of class labels in Figure 1. Specifically, starting with
an input image I, two stages are usually adopted to generate
the global feature, as we formally define below.

(1) Coding. In the coding step, we extract local image
patches, and encode each patch toK activation values based
on a codebook of size K (learned via a separate dictionary
learning step). These activations are typically binary (in the
case of vector quantization) or continuous (in the case of
e.g. sparse coding). It is generally believed that having an
overcomplete (K � the dimension of patches) codebook

while keeping the activations sparse helps classification, es-
pecially when linear classifiers are used in the later steps.

Recently, Coates et al. [9] have shown that relatively
simple dictionary learning and encoding approaches lead
to surprisingly good performances. To learn a dictionary
D = [d1,d2, · · · ,dK ] of size K from randomly sam-
pled patches {p1,p2, · · · ,pN} each reshaped as a vector
of pixel values, two simple yet effective approaches are ad-
vocated:

1. K-means, which minimizes the squared dis-
tance between each patch and its nearest code:
minD

∑N
i=1 minj ‖pi − dj‖22.

2. OMP-M, which learns a dictionary that minimizes the
reconstruction error, with the constraint that each patch
is modeled by a linear combination of at most M
codes: minD,αi

∑N
i=1 ‖pi−Dαi‖22, where the length

of each dictionary entry dj is 1, and the cardinality of
each reconstruction coefficient αi is at most M .

For encoding, Coates et al. also propose to substitute sparse
coding by the following efficient approaches:

1. Triangle coding [6], which computes the activation of
code k for a patch p as fk(x) = max{0, µ(z) − zk},
where zk is the distance from p to the k-th code dk,
and µ(z) is the mean of distances from p to all codes.

2. Soft thresholding, which computes the inner product
between p and each code, with a fixed threshold pa-
rameter α: fk(x) = max{0,d>k p− α}

We refer to [9] for a systematic discussion about differ-
ent dictionary learning and encoding algorithms. In our ex-
periment, we will adopt these standard approaches in order
to isolate the contribution of spatial pooling from the choice
of different coding methods. Since local patches are usually
extracted densely in a grid-based fashion, we will organize
the activations of image I as a set of matrices denoted by
{A1(I)A2(I), · · · ,AK(I)}, one for each code in the code-
book, whose element Akij(I) contains the activation of code
dk for the local image patch at spatial location (i, j).

(2) Pooling. Since the coding result are highly overcom-
plete and highly redundant, the pooling layer aggregates the
activations over certain spatial regions of the image to ob-
tain anM dimensional vector x as the global representation



of the image. Each dimension of the pooled feature xi is
obtained by taking the activations of one code in a specific
spatial region (shown as the red rectangular in Figure 1),
and performing a predefined operator (usually average or
max) on the set of activations.

We follow a similar approach to that in [3] to formally
define pooled features. Specifically, given an operator op
that maps a set of real values to a single real value (e.g.
by taking their average), a pooled feature xi can be defined
based on the selection of a code indexed by ci and a spatial
region denoted by Ri:

xi = op(Aci
Ri

) (1)

Borrowing the definition from neuroscience, we call Ri the
receptive field for the pooled feature, which could be seen
as a binary mask over the image. Aci

Ri
is then the set of

activations of code ci in the receptive field Ri.
This definition provides a general definition that em-

braces existing pooling algorithms. For example, com-
monly used operators involve computing the statistics of the
activations under the p-norm:

xi =
1

|Ri|
(
∑

αi∈A
ci
Ri

αpi )
1
p (2)

when p = 1 this corresponds to the average pooling, and
when p→∞ this corresponds to the max pooling.

In our paper we focus on the definition of receptive fields
for pooling. The simplest form of pooling takes the whole
image as the receptive field, thus assuming a bag-of-words
model where spatial information is ignored. The more com-
monly adopted spatial pooling approach [21, 33] pools fea-
tures from multiple levels of regular grids, thus defining a
pyramid of pooled features. Given a set of K codes and a
set of N receptive fields, the pooled features are then de-
fined by taking the Cartesian product of the codes and the
receptive fields, yielding a KN -dimenisonal global feature.

Finally, a classifier, usually linear SVM or logistic re-
gression, is trained using the global feature vector to predict
the final label of the image as y = f(x;θ).

3. Receptive Field Learning for Pooled Fea-
tures

While significant efforts have been placed on the coding
part of the classification pipeline, the pooling step has re-
ceived relatively little attention. Existing research on pool-
ing mainly focuses on the analysis of the pooling operator,
such as in [4]. Specifically, spatial regions are almost al-
ways defined on regular grids [33]. In fact, regular grids
may not guarantee to be optimal: for example, long hori-
zontal bars may serve as better pooling regions for natural
scenes, and such receptive fields may be dataset-dependent.

(a) (b) (c)
Figure 2. An example of overcomplete rectangular bins based on a
4× 4 superpixel setting: (a) superpixels; (b) spatial pyramid bins;
(c) overcomplete rectangular bins.

Inspired by the selectivity of complex cells in the visual
cortex, we propose to learn the pooled features adaptively.
Specifically, learning a set of M pooled features is equiv-
alent to learning the parameters C = {c1, c2, · · · , cM} and
R = {R1,R2, · · · ,RM} 1. To this end, we note that the
pooled features are directly fed into the final classifier, and
propose to jointly learn the classifier parameters θ together
with the pooling parameters. Thus, given a set of training
data X = {(In,yn)}Nn=1, the joint learning leads to solving
the following optimization problem:

min
C,R,θ

1

N

N∑
n=1

L(f(xn;θ),yn) + λReg(θ) (3)

where xni = op(Aci
n,Ri

)

where we assume that the coding from In to {Aci
n }Ki=1 is

done in an unsupervised fashion, as has been suggested by
several papers such as [6]. We call this method receptive
field learning, as the receptive fields are learned in such a
way that information most relevant to the classification task
will be extracted.

One practical issue is that solving the optimization prob-
lem (3) may be impractical, as there is an exponential num-
ber of receptive field candidates, leading to a combinato-
rial problem. Numerical solutions are also difficult, as the
gradient with respect to the pooling parameters is not well-
defined. Thus, instead of searching in the space of all possi-
ble receptive fields, we adopt the idea of over-completeness
in the sparse coding community. Specifically, we start from
a set of reasonably overcomplete set of potential receptive
fields, and then find a sparse subset of such pooled features.
The over-completeness enables us to maintain performance,
while the sparsity allows us to still carry out classification
efficiently during testing time.

3.1. Overcomplete Receptive Fields

The exponential number of possible receptive fields
arises when we consider the inclusion and exclusion of sin-
gle pixels individually. In practice this is often unneces-
sary, as we expect the active pixels in a receptive field to be

1For simplicity, we will use the max operator, but note that any opera-
tor could also be incorporated in our framework.



spatially contiguous. In this paper, we use receptive fields
consisting of rectangular regions2: this provides us a rea-
sonable level of over-completeness, as there are O(n4) dif-
ferent rectangular receptive fields for an image containing
n × n pixels. In addition, since the motivation of spatial
pooling is to provide tolerance to small spatial displace-
ments, we build the rectangular regions upon superpixels,
which are defined as dense regular grids on the image. Fig-
ure 2 shows an example of such rectangular receptive fields
compared with regions defined by the spatial pyramid on a
4× 4 grid.

Given the set of P overcomplete regions, which we
denote by R = {R1,R2, · · · ,RP }, and the dictionary
D = {d1,d2, · · · ,dK} of size K, we can define a set of
PK potential pooled features based the Cartesian product
R × D. Specifically, the i-th receptive field and the j-th
code jointly defines the (K × i + j)-th pooled feature as
xK×i+j = op(Aj

Ri
). Note that when the coding and pool-

ing are both carried out in an overcomplete fashion, the re-
sulting pooled feature is usually very high-dimensional.

3.2. Structured Sparsity for Receptive Field Learn-
ing

While it is possible to train a linear classifier using the
high-dimensional pooled feature x above, in practice it
is usually beneficial to build a classifier using relatively
low-dimensional features. In addition, for multiple-label
classification, we want the classifiers of different labels to
share features. This brings two potential advantages: fea-
ture computation could be minimized, and sharing features
among different classifiers is known to provide robustness
to the learned classifiers. To this end, we adopt the idea of
structured sparsity [26, 29], and train a multiple-class linear
classifier y = f(x) = Wx+b via the following optimiza-
tion problem:

min
W,b

1

N

N∑
n=1

l(W>xn+b,yn)+
λ1

1
‖W‖2Fro+λ2‖W‖1,∞

(4)
where yi is the L-dimensional label vector coded in a 1 −
of − L fashion, with values taken from {−1,+1} given L
classes. xi is an M -dimensional feature vector defined by
overcomplete pooling in the previous subsection, and W =
[w1,w2, · · · ,wL] is a M ×L weight matrix containing the
weight vector for the L classifiers.

Two regularization terms are adopted in the optimiza-
tion. The squared Frobenius norm ‖W‖2Fro aims to mini-
mize the structured loss in the classical SVM fashion, and

2As a side note, we also experimented with receptive fields that are
sampled from an Ising model on the fly during training, but rectangular re-
gions worked empirically better, possibly because the additional flexibility
of Ising models leads to over-fitting the training data.
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Figure 3. Performance vs. number of selected features, with the
experiment setting in Table 1 of Section 4.

the second regularizer is the L1,∞ norm of the matrix W:

‖W‖1,∞ =

M∑
i=1

‖Wi,·‖∞ =

M∑
i=1

max
j∈{1,··· ,L}

|Wij | (5)

where Wi,· denotes the i-th row of the matrix W . This reg-
ularizer introduces structured sparsity by encouraging the
weight matrix W to be row-wise sparse, so that the classi-
fiers for different classes tend to agree on whether to use a
specific feature, and when combined together, only jointly
use a subset of the overcomplete pooled features. The addi-
tion of the L1,∞ norm also provides a elastic-net like regu-
larization, which is known to perform well when the dimen-
sion of data is much higher than the number of data points
[37].

For optimization considerations, we use the multi-class
extension of the binomial negative log likelihood (BNLL)
loss function [25]:

l(W>x+ b,y) =

L∑
i=1

ln(1 + e−yi(W
>
·,ix+bi)) (6)

The choice of the BNLL loss function over the hinge loss is
mainly for computational simplicity, as the gradient is eas-
ier to compute for any input. In practice, the performance
does not change much if we use the hinge loss instead.

3.3. Fast Approximate Learning by Feature Selec-
tion

Jointly optimizing (4) is still a computationally challeng-
ing task despite its convexity, due to the over-completeness
in both coding and pooling. While it is possible to carry
out the computation on smaller-scale problems like Caltech-
101, we adopt a greedy approach to train the model for
larger-scale problems. Inspired by the matching pursuit al-
gorithm in dictionary training and the grafting algorithm
[25] in machine learning, we start with an empty set of se-
lected features, incrementally add features to the set, and
retrain the model when new features are added.

Mathematically, we maintain a set S recording the set
of currently selected features. At each iteration, for each



feature index j that has not been not selected, we compute
the score of the feature as the 2-norm of the gradient of the
objective function (4), denoted by L(W,b), with respect to
the corresponding weight vectors:

score(j) =

∥∥∥∥∂L(W,b)

∂Wj,·

∥∥∥∥2

Fro

(7)

We then select the feature with the largest score, and add
it to the selected set S. The model is retrained using the
previously learned optimum solution as the starting point.
From a boosting perspective, this can be considered as in-
crementally learning weak classifiers, but our method dif-
fers from boosting in the sense that the weights for already
selected features are also updated when new features are se-
lected.

As the speed of retraining drops when more features are
added, we adopt an approximate retraining strategy: for
each iteration t, we select an active subset SA of S based
on the score above. We then retrain the model with respect
to the active set and the bias term only:

W
(t+1)
SA,· ,b = argminWSA,·,b L(W,b) (8)

with the constraint that WS̄A,· keep unchanged. The intu-
ition is that with an already trained classifier from the pre-
vious iteration, adding one dimension will only introduce
small changes to the existing weights.

In practice, we found the performance of this approx-
imate algorithm with the active set size less than 100 to
be very close to the full retraining algorithm with a signifi-
cant increase in computation speed. Figure 3 shows typical
curves of the training and testing accuracy with respect to
the number of iterations. The performance usually stabi-
lizes with a significantly smaller number of features, show-
ing the effectiveness of introducing structured sparsity into
classifier learning.

4. Experiments
We will mainly report the performance of our algorithm

on the CIFAR-10 dataset3, which contains 50,000 32 × 32
images from 10 categories as training data, and 10,000 im-
ages as testing data.

We fix the dictionary learning algorithms to k-means
clustering and the coding algorithms to triangular coding
as proposed in [6] for CFAR-10. Such a coding strategy has
been shown to be particularly effective in spite of its sim-
plicity. We also tested alternative dictionary learning and
coding algorithms, which led to similar conclusions. As
our main focus is on learning receptive fields for pooled fea-
tures, the results of different coding algorithms are omitted,

3http://www.cs.toronto.edu/ kriz/cifar.html
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Figure 4. Performance comparison among spatial pyramid pool-
ing, random feature selection and our method, all using the same
number of features for the final classification. It can be observed
that a few selected features could already achieve a comparatively
high performance.

and we refer to [9] for a detailed discussion about dictionary
learning and coding algorithms.

For classification, when we use pre-defined receptive
fields such as spatial pyramids, the SVM regularization term
is chosen via 5-fold cross validation on the training data.
When we perform feature selection, we fix λ1 = 0.01
(which is the best value when performing 5-fold cross val-
idation for max pooling on a 2×2 regular grid) and drop
λ2, since the incremental feature selection already serves as
a greedy approximation of the sparse constraint. Although
the parameters are not tuned specifically for each configura-
tion, we found it to perform well empirically under various
scenarios.

4.1. Spatial Pyramid Revisited

It is interesting to empirically evaluate the performance
of spatial pyramid regions against other choices of recep-
tive fields. To this end, we trained a dictionary of size 200
(for speed considerations), and tested the performance of 3-
layer spatial pyramid pooling against two algorithms based
on overcomplete receptive fields: (1) random selection from
the overcomplete pooled features, and (2) our method, both
selecting the same number of features that spatial pyramid
pooling uses. Results are shown in Figure 4. Our method
outperforms SPM, but a more interesting finding is that
the predefined spatial pyramid regions perform consistently
worse than random selection, indicating that arbitrarily de-
fined pooled features may not capture the statistics of real-
world data well. With explicit learning of the pooling pa-
rameters, we achieved the highest performance among the
three algorithms, showing the effectiveness and necessity of
learning adaptive receptive fields.

4.2. The Effect of Spatial Over-completeness

One may ask if the performance increase could be ob-
tained without overcompletenes by simply using a denser
grid. To answer this question, we examined the perfor-
mance of our algorithm against the 2×2 pooling grid (which
is used in [9] to obtain very high performance) and a denser
4 × 4 grid, with both average and max poolings. We
also compared our method against random feature selection
from the same pooling candidates. Table 1 summarizes the



Pooling Area Method Features Accuracy
2×2 Ave 800 70.24
4×4 Ave 3,200 72.24
2×2 Max 800 66.31
4×4 Max 3,200 73.03

3-layer SPM Max 4,200 74.83
OC + feat select Max 800 73.42

3,200 76.28
4,200 76.59
6,400 76.72

OC, all features Max 20,000 76.44
OC + rand select Max 800 69.48
OC + rand select Max 3,200 74.42
OC + rand select Max 4,200 75.41

Table 1. Comparison of different pre-defined pooling strategies
and our method (overcomplete (OC) + feature selection). Ran-
dom selection from the same overcomplete pooled features is also
listed, showing the necessity of better receptive field learning.

testing accuracy under various experimental settings, using
a codebook size of 200.

Results from Table 1 demonstrates that denser pooling
does help performance. The 4×4 grid increases the perfor-
mance by about 3 percent compared to 2×2 pooling. How-
ever, with overcomplete receptive fields we can almost al-
ways increase performance further. We achieved an 76.72%
accuracy with only 200 codes, already close with state-of-
the-art algorithms using much larger codebook sizes (Table
2). It is also worth pointing out that even random feature
selection gives us comparable or better performance when
compared to pre-defined pooling grids under the same num-
ber of feature dimension (e.g. compare the performance be-
tween 4×4 max pooling and randomly selecting 3, 200 fea-
tures from an overcomplete set of pooled features).

Further, the importance of feature selection lies in two
aspects: first, simply using all the features is not practical
during testing time, as the dimension can easily go to hun-
dreds of thousands when we increase the codebook size.
Feature selection is able to get very close performance com-
pared to using all the features, but with a significantly lower
dimensionality, which is essential in many practical scenar-
ios. Usually, feature selection enables us to achieve a high
performance with only a few features (Figure 3). Adding
remaining features will only contribute negligibly to the
overall performance. Second, performing feature selection
has the potential benefit of removing redundancy, thus in-
creasing the generalization ability of the learned classifiers
[25, 30]. In our experiment in Table 1, the best performance
is achieved with a few thousands features. Similarly, we
found that with larger codebook sizes, using all the over-
complete pooled features actually decreases performance,
arguably due to the decrease of the generalization ability.
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Figure 5. Testing accuracy on CIFAR-10 with and without
overcomplete pooling. In the figure, “equal-dim” selects the
same number of features as the baseline (Coates et al.[6]), and
“optimum-dim” selects the optimum number of features deter-
mined by cross-validation. (X-axis in log scale)

4.3. Larger Codebook vs. Better Spatial Pooling

Under the two-stage pipeline adopted in this paper, there
are effectively two possible directions to increase the per-
formance: to increase the codebook size and to increase the
pooling over-completeness. We argue that these two direc-
tions are complementary: the performance gain from our
effort on pooling could not simply be replaced by increas-
ing the codebook size, at least not easily. More importantly,
as the codebook size grows larger, it becomes more difficult
to obtain further performance gain, while it is still relatively
easy to obtain gains from better pooling.

To empirically justify this argument, we trained multi-
ple codebooks of different sizes, and compared the result-
ing accuracies with and without overcomplete pooling in
Figure 5. As can be observed, it becomes harder to ob-
tain further performance gain by increasing the codebook
size when we already have a large codebook, while using
a better pooling strategy always brings additional accuracy
gains. In fact, with our method, we are able to use a code-
book of half the size (and half the number of pooled fea-
tures) while maintaining performance (compare the green
and blue curves). It is particularly interesting that, by select-
ing more features from the overcomplete spatial regions, we
are able to achieve state-of-the-art performance with a much
smaller number of codes (the red curve), which has the po-
tential in time-sensitive or memory-bounded scenarios.

4.4. Best Performance

Our best performance on the CIFAR-10 dataset was
achieved by training a codebook size of 6,000, performing
max pooling on overcomplete rectangular bins based on a
4× 4 grid, and selecting features up to 24,000 dimensions.
We also note that the accuracy has not saturated at this num-
ber of features, but we would like to test the performance
when the number of mid-level features is limited to a rea-
sonable scale. With these settings, we achieved an accuracy



Method Pooled Features Accuracy
ours, d=1600 6,400 80.17
ours, d=4000 16,000 82.04
ours, d=6000 24,000 83.11

Coates et al. [6], d=1600 6,400 77.9
Coates et al. [6], d=4000 16,000 79.6
Coates et al. [9], d=6000 48,000 81.5

Conv. DBN [18] N/A 78.9
Improved LCC [35] N/A 74.5
8-layer Deep NN [5] N/A 80.49
3-layer Deep NN [8] N/A 82.0

Table 2. Performance on the CIFAR-10 dataset. The first and sec-
ond blocks compare performance between our method and Coates
et al. [6, 9] under similar codebook sizes, where the only differ-
ence is the spatial pooling strategy. The third block reports the
performance of several state-of-the-art methods in the literature.

of 83.11% on the testing data. To the best of our knowl-
edge, this is the best published result on CIFAR-10 without
increasing the training set size by morphing the images.

Table 2 lists the performance of several state-of-the-art
methods. It is also worth pointing out that, to achieve the
same performance, our algorithm usually uses a much lower
number of features compared with other well-performing
algorithms.

4.5. Results on MNIST

We can view the set of learned receptive fields for pool-
ing as a saliency map for classification [14]. To visually
show the saliency map and verify its empirical correctness,
we applied our method to handwritten digit recognition on
the MNIST dataset, on which convolutional deep learning
models are particularly effective. To this end, we adopted
a similar pipeline as we did for CIFAR-10: dense 6x6 local
patches with ZCA whitening are used; a dictionary of size
800 is trained with OMP-1, and thresholding coding with
α = 0.25 (untuned) is adopted. The features are then max-
pooled on overcomplete rectangular areas based on a 6× 6
regular grid. Note that we used a different coding method
from the CIFAR-10 experiment to show that the overcom-
plete spatial pooling method is agnostic of the choice of
low-level coding algorithms. Any parameter involved in the
pipeline such as SVM regularization weights is tuned on a
random 50k/10k split of the training data.

Figure 6 shows the 1-vs-1 saliency maps between digits.
It can be seen that by learning receptive fields, the classifier
focuses on regions where the digits have maximal dissim-
ilarity, e.g., the bottom part for 8 and 9, and the top part
for 3 and 5, which matches our intuition about their appear-
ances. For 10-digit classification, we achieved an error rate
of 0.64%, on par with several state-of-the-art algorithms
(Figure 6 left). A gap still exists between our method and
the best deep-learning algorithm, and combining receptive
learning with deeper structures is future work.

Method err%
Baseline [9]a 1.02
Our Method 0.64

Lauer et al. [20] 0.83
Labusch et al. [19] 0.59
Ranzato et al. [27] 0.62
Jarrett et al. [15] 0.53

aOur implementation.

Figure 6. Left: Performance comparison (error rate in percentage)
on MNIST. Top box: comparison between algorithms using simi-
lar pipelines. Bottom box: performance of other related algorithms
in the literature. Right: 1-vs-1 saliency maps learned on MNIST.
The left-bottom corner plots the mean of digit 8 and 9 multiplied
by the corresponding saliency map, showing that the classifier fo-
cuses on the bottom part which intuitively also distinguishes the
two digits best.

Method Codebook Pooling Performance
ScSPM [33] 1024 (SC) SPM 73.2±0.54

LCC+SPM [31] 1024 SPM 73.44
Our Method 1024 (SC) OC 75.3±0.70

Boureau et al. [3] 64K SPM 77.1±0.7

SPM [21] 64.6±0.7
NBNN [1] 72.8±0.39 (15 training)

Jarret et al. [15] 65.6±1.0
RLDA [16] 73.7±0.8

Adaptive Deconv. Net [36] 71.0±1.0
Feng et al. [12] 82.6

Table 3. Performance comparison (accuracy in percentage) on
Caltech-101. Top: comparison between algorithms using similar
pipelines. Bottom: performance of other related algorithms in the
literature.

4.6. Results on Caltech-101

Lastly, we report the performance of our algorithm com-
pared with SPM on the Caltech-101 dataset in Table 3.
State-of-the-art performance following similar pipelines are
also included in the table. Specifically, we used the same
two-step pipeline as proposed by Yang et al. [33]: SIFT
features are extracted from 16×16 patches with a stride of
8, and are coded using sparse coding with a codebook of
size 1024. For SPM, the coded features are pooled over a
pyramid of 1×1, 2×2, 4×4 regular grids; for a fair compar-
ison we also use the 4 × 4 regular grid as our base regions,
and select the same number of features as SPM uses.

As can be observed in the table, our pooling algorithm
outperforms spatial pooling, although a gap still exists be-
tween our result and state-of-the-art methods, which uses
more complex coding schemes than that we used. The
results suggest that coding is a more dominant factor for
the performance of Caltech-101. Existing research, espe-
cially the Naive Bayes nearest neighbor method [1], has
also shown a consistent increase of accuracy with higher-



dimensional coding output [3, 34]. However, we still obtain
a consistent gain by adopting more flexible receptive fields
for pooling, which justifies the effectiveness of the proposed
algorithm. Note that the best performance reported by Feng
et al. [12] was obtained by jointly learning the pooling op-
erator (p in p-norm pooling) and a per-code spatial saliency
map in addition to a larger dictionary, which also follows
the idea of learning better spatial information beyond SPM.

5. Conclusion
In this paper, we examined the effect of receptive field

designs on the classification accuracy in the commonly
adopted pipeline of image classification. While existing
algorithms use manually defined spatial regions for pool-
ing, learning more adaptive receptive fields increases per-
formance even with a significantly smaller codebook size at
the coding layer. We adopted the idea of over-completeness
and structured sparsity, and proposed an efficient algorithm
to perform feature selection from a set of pooling candi-
dates. With this method, we achieved the best published
performance on the CIFAR-10 dataset, using a much lower
dimensional feature space than previous methods. Possi-
ble future work involves more flexible definition of pooling
receptive fields, and unsupervised learning of such pooled
features.
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